以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (8): 43-48.doi: 10.16460/j.issn1008-9969.2024.08.043

• 循证护理 • 上一篇    下一篇

心力衰竭患者30天非计划性再入院风险预测模型的系统评价

余璐1,2, 黄晓沁2, 刘琳1, 袁嘉敏1, 邬青1   

  1. 1.苏州大学附属第一医院 护理部,江苏 苏州 215006;
    2.苏州大学苏州医学院 护理学院,江苏 苏州 215006
  • 收稿日期:2023-10-19 出版日期:2024-04-25 发布日期:2024-05-08
  • 通讯作者: 邬青(1980-),女,江苏苏州人,硕士,副教授,副主任护师,硕士研究生导师。E-mail: qwu@suda.edu.cn
  • 作者简介:余璐(1998-),女,江苏淮安人,本科学历,硕士研究生在读。
  • 基金资助:
    国家自然科学基金青年项目(81700297)

  • Received:2023-10-19 Online:2024-04-25 Published:2024-05-08

摘要: 目的 系统评价心力衰竭患者30 d再入院风险预测模型,以期为医务工作者及早识别患者再入院风险提供参考。方法 检索中国知网、维普、万方、中国生物医学文献数据库、PubMed、Embase、CINAHL、Web of Science和Cochrane Library中有关心力衰竭患者再入院风险模型的研究,检索时间为建库至2023年4月30日。由2名研究者独立筛选文献并提取信息,采用预测模型研究的偏倚风险评估工具(Prediction Model Risk of Bias Assessment Tool,PROBAST)评价纳入文献的偏倚风险和适用性。结果 纳入9篇研究,共包括9个预测模型,模型受试者工作特征曲线下面积均>0.6。主要预测因子包括血钠、心脏再同步治疗、N端脑钠肽前体、住院时长、肌酐、射血分数、尿素氮等。所有研究的整体偏倚风险较高,适用性良好。结论 心力衰竭患者30 d再入院风险预测模型的研究处于初步探索阶段,现有预测模型虽具备一定的预测性能,但在预测因子的选择上较为局限且总体偏倚风险较高,期待未来开发出性能优良、可大范围实际应用的预测模型。

关键词: 心力衰竭, 再入院, 预测, 模型, 系统评价

中图分类号: 

  • R473.54
[1] Ponikowski P, Voors AA, Anker SD, et al.2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Rev Esp Cardiol (Engl Ed), 2016, 69(12): 1167.DOI: 10.1016/j.rec.2016.11.005.
[2] Antonione R, Sinagra G, Moroni M, et al.Palliative care in the cardiac setting: a consensus document of the Italian Society of Cardiology/Italian Society of Palliative Care (SIC/SICP)[J]. G Ital Cardiol (2006), 2019, 20(1):46-61.DOI:10.1714/3079.30720.
[3] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J].中国循环杂志,2022, 37(6):553-578.DOI: 10.3969/j.issn.1000-3614.2023.06.001.
[4] Tsao CW, Aday AW, Almarzooq ZI, et al.Heart disease and stroke statistics—2022 update: a report from the American Heart Association[J]. Circulation, 2022, 145(8):e153-e639.DOI: 10.1161/CIR.0000000000001052.
[5] Bambhroliya AB, Donnelly JP, Thomas EJ, et al.Estimates and temporal trend for US nationwide 30-day hospital readmission among patients with ischemic and hemorrhagic stroke[J]. JAMA Netw Open, 2018, 1(4): e181190-e181190.DOI: 10.1001/jamanetworkopen.2018.1190.
[6] Kwok CS, Shah B, Al-Suwaidi J, et al.Timing and causes of unplanned readmissions after percutaneous coronary intervention: insights from the nationwide readmission database[J]. JACC Cardiovasc Interv, 2019, 12(8):734-748.DOI:10.1016/j.jcin.2019.02.007.
[7] Reddy YNV, Borlaug BA.Readmissions in heart failure: it's more than just the medicine[J]. Mayo Clin Proc, 2019,94(10):1919-1921.DOI: 10.1016/j.mayocp.2019.08.015.
[8] 国家卫生健康委员会. 心血管系统疾病相关专业医疗质量控制指标(2021年版)[J].中国循环杂志,2021,36(8):733-742.DOI: 10.3969/j.issn.1000-3614.2021.08.002.
[9] Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med,2014,11(10):e1001744.DOI:10.1371/journal.pmed.1001744.
[10] Wolff RF, Moons KGM, Riley RD, et al.PROBAST: a tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med, 2019, 170(1): 51-58.DOI: 10.7326/M18-1376.
[11] 陈香萍,张奕,庄一渝,等. PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J].中国循证医学杂志,2020,20(6):737-744.DOI:10.7507/1672-2531.201910087.
[12] Fleming LM, Gavin M, Piatkowski G, et al.Derivation and validation of a 30-day heart failure readmission model[J]. Am J Cardiol, 2014, 114(9): 1379-1382.DOI: 10.1016/j.amjcard.2014.07.071.
[13] Frizzell JD, Liang L, Schulte PJ, et al.Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches[J]. JAMA Cardiol, 2017, 2(2):204-209.DOI: 10.1001/jamacardio.2016.3956.
[14] Mahajan SM, Burman P, Newton A, et al.A validated risk model for 30-day readmission for heart failure[J].Stud Health Technol Inform, 2017(245):506-510.DOI:10.3233/978-1-61499-830-3-506.
[15] Allam A, Nagy M, Thoma G, et al.Neural networks versus Logistic regression for 30 days all-cause readmission prediction[J]. Sci Rep, 2019, 9(1):9277.DOI:10.1038/s41598-019-45685-z.
[16] Delgado JF, Ferrero Gregori A, Fernández LM, et al.Patient-associated predictors of 15-and 30-day readmission after hospitalization for acute heart failure[J]. Curr Heart Fail Rep,2019(16):304-314. DOI:10.1007/s11897-019-00442-1.
[17] Liu X, Chen Y, Bae J, et al.Predicting heart failure readmission from clinical notes using deep learning[C].2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019:2642-2648.DOI:10.1109/BIBM47256.2019.8983095.
[18] Sohrabi B, Vanani IR, Gooyavar A, et al.Predicting the readmission of heart failure patients through data analytics[J]. J Inf Knowl Manag,2019,18(1):1950012.DOI:10.1142/S0219649219500126.
[19] Sharma V, Kulkarni V, McAlister F, et al. Predicting 30-day readmissions in patients with heart failure using administrative data: a machine learning approach[J]. J Card Fail, 2022, 28(5):710-722.DOI: 10.1016/j.cardfail.2021.12.004.
[20] 李代毅. 心力衰竭30天再入院风险预测模型的构建及药物治疗管理平台的初步探索[D].重庆:重庆医科大学,2022.DOI: 10.27674/d.cnki.gcyku.2022.001476.
[21] Patel N, Chakraborty S, Bandyopadhyay D, et al.Association between depression and readmission of heart failure: a national representative database study[J]. Prog Cardiovasc Dis, 2020, 63(5):585-590.DOI:10.1016/j.pcad.2020.03.014.
[22] 彭杰文, 陶明, 徐元锂, 等. 慢性心力衰竭患者再入院风险因素的Meta分析[J].中华现代护理杂志, 2021,27(7):857-864.DOI:10.3760/cma.j.cn115682-20200728-04617.
[23] Lee HB, Bienvenu OJ, Cho SJ, et al.Personality disorders and traits as predictors of incident cardiovascular disease: findings from the 23-year follow-up of the Baltimore ECA study[J]. Psychosomatics, 2010, 51(4):289-296.DOI:10.1176/appi.psy.51.4.289.
[24] Aronow WS, Shamliyan TA.Dietary sodium interventions to prevent hospitalization and readmission in adults with congestive heart failure[J]. Am J Med, 2018, 131(4):365-370.DOI: 10.1016/j.amjmed.2017.12.014.
[25] Lee KS, Lennie TA, Heo S, et al.Prognostic importance of sleep quality in patients with heart failure[J]. Am J Crit Care, 2016, 25(6):516-525.DOI:10.4037/ajcc2016219.
[26] Han Q, Ren J, Tian J, et al.A nomogram based on a patient-reported outcomes measure: predicting the risk of readmission for patients with chronic heart failure[J]. Health Qual Life Outcomes, 2020, 18(1):1-8.DOI:10.1186/s12955-020-01534-6.
[27] Kitamura M, Izawa KP, Taniue H, et al.Relationship between activities of daily living and readmission within 90 days in hospitalized elderly patients with heart failure[J]. Biomed Res Int, 2017(2017):7420738. DOI:10.1155/2017/7420738.
[28] 陈华,孙兴兰,肖丹,等.心力衰竭患者易损期容量管理的最佳证据总结[J].护理学报,2022, 29(21):38-42.DOI:10.16460/j.issn1008-9969.2022.21.038.
[29] Shin S, Austin PC, Ross HJ, et al.Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality[J]. ESC Heart Fail, 2021, 8(1): 106-115.DOI:10.1002/ehf2.13073.
[30] Mahajan S, Burman P, Hogarth M.Analyzing 30-day readmission rate for heart failure using different predictive models[J]. Stud Health Technol Inform, 2016(225):143-147.DOI:10.3233/978-1-61499-658-3-143.
[31] Awan SE, Bennamoun M, Sohel F, et al.Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics[J]. ESC Heart Fail, 2019, 6(2):428-435.DOI:10.1002/ehf2.12419.
[32] Chen S, Hu W, Yang Y, et al.Predicting six-month re-admission risk in heart failure patients using multiple machine learning methods: a study based on the Chinese heart failure population database[J]. J Clin Med, 2023, 12(3): 870.DOI:10.3390/jcm12030870.
[33] Kang Y, Topaz M, Dunbar SB, et al.The utility of nursing notes among medicare patients with heart failure to predict 30-day rehospitalization:a pilot study[J].J Cardiovasc Nurs, 2022, 37(6):E181-E186.DOI:10.1097/JCN.0000000000000871.
[34] Jiang W, Siddiqui S, Barnes S, et al.Readmission risk trajectories for patients with heart failure using a dynamic prediction approach: retrospective study[J]. JMIR Med Inform, 2019, 7(4).DOI:10.2196/14756.
[1] 曹娟, 李方, 于跃, 戴丽, 杨丹丹, 李志华, 徐欣怡, 戴琪, 陈柯宇. 食管癌术后静脉血栓栓塞症风险预测模型的构建及验证[J]. 护理学报, 2024, 31(8): 63-68.
[2] 赵洁, 宋雅玲, 畅盼, 郭倩, 王锦华. 慢性心力衰竭患者及其照顾者心理弹性在疾病不确定感与生活质量间的主客体互倚中介模型研究[J]. 护理学报, 2024, 31(7): 17-21.
[3] 薛荣, 张开利, 陈保云, 马荣慧, 张雨欣. 中老年脑卒中患者多维衰弱发展轨迹及其影响因素研究[J]. 护理学报, 2024, 31(6): 6-12.
[4] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[5] 吴林梅, 梁志金, 刘瑞杰, 钟静静, 邱予骅. COPD患者运动康复促进和阻碍因素的系统评价-基于CFIR多层次理论[J]. 护理学报, 2024, 31(5): 44-49.
[6] 方天露, 刘俐惠. 基于SWOT-CLPV 分析模型的管理策略在互联网+护理服务中的实践[J]. 护理学报, 2024, 31(4): 29-32.
[7] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[8] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[9] 潘婷, 陈艳, 孔方, 张爱玲, 陈丹蕾, 丁成亮. 克罗恩病患者及其配偶主观幸福感与婚姻调适的主客体效应分析[J]. 护理学报, 2024, 31(2): 1-5.
[10] 袁佳琳, 杨玲玲, 刘晓慧, 甘茹, 杜瑄, 高海花, 杨小萍, 王慧娟. 308名脑卒中患者主要照顾者抑郁现状及影响因素分析[J]. 护理学报, 2024, 31(2): 27-31.
[11] 王微, 路潜, 宋艳茹, 柯桑桑, 刘春蕾. 我国护理核心期刊近5年预测模型研究论文分析[J]. 护理学报, 2024, 31(1): 37-41.
[12] 史婷婷, 李婷, 黄友鹏, 赵媛, 朱晓丽, 周梦娟, 陈云梅. 2型糖尿病患者合并骨质疏松风险预测模型的范围综述[J]. 护理学报, 2024, 31(1): 52-57.
[13] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
[14] 王迪, 李现文. 基于SEIPS模型的认知症激越行为照护体验的质性研究[J]. 护理学报, 2023, 30(8): 23-28.
[15] 朱明月, 丁晓彤, 史纪元, 李峥. 自我感知老化对老年人认知功能影响的系统评价[J]. 护理学报, 2023, 30(8): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
[1] 张永苹, 雷黎明, 凌云, 刘嘉敏, 罗桃芬, 李天宝. 156例体外循环心脏术后严重高乳酸血症患者的护理[J]. 护理学报, 2023, 30(4): 66 -67 .
[2] 宫淑萍, 王晓敏, 姜玉晓, 孙晓莹, 赵晓敏. 实习初期护生共情能力潜在剖面及影响因素的研究[J]. 护理学报, 2023, 30(11): 17 -21 .
[3] 汪静容, 温绣蔺, 乔莉娜, 金鲜珍, 樊慧, 刘璇璇, 罗利群, 肖倩. 早期肠造口患者家庭照顾者核心照顾技能指标体系的构建[J]. 护理学报, 2023, 30(12): 1 -6 .
[4] 李冬秀, 洪霞, 陈婷玉, 向月, 方凤贞. 基于深度学习理论的“传染病护理学”课程思政教学实践[J]. 护理学报, 2023, 30(14): 24 -27 .
[5] 相军爱, 闫荣, 丁敏, 孟祥敏, 林雨婷, 柳文慧, 姜凯. 癌症患者临终关怀偏好的研究进展[J]. 护理学报, 2023, 30(14): 37 -41 .
[6] 余卫卫, 夏美霞, 谢庆磊, 丁世云, 戚方圆, 王桂花. 构建腹膜透析患者腹腔压力测量方案的品管圈实践[J]. 护理学报, 2023, 30(19): 32 -36 .
[7] 张凤玲, 卢吉, 侯胜超. 国内肿瘤患者个案管理应用进展及展望[J]. 护理学报, 2023, 30(24): 24 -26 .
[8] 唐鑫烨, 徐虹霞, 徐亦虹, 梁霄, 施龚洁, 毛杭飞, 许闵佳, 程华娟. 腹腔镜下肝胆手术患者全麻苏醒后早期饮水时机的研究[J]. 护理学报, 2023, 30(24): 53 -56 .
[9] 王微, 路潜, 宋艳茹, 柯桑桑, 刘春蕾. 我国护理核心期刊近5年预测模型研究论文分析[J]. 护理学报, 2024, 31(1): 37 -41 .
[10] 孙素亚, 陈亚梅, 陈伟仙, 薄瑾, 刘晓红, 黄燕, 林梦月. 认知性访谈在过渡期炎症性肠病患者过渡准备量表文化调适中的应用[J]. 护理学报, 2024, 31(6): 1 -5 .