以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (1): 52-57.doi: 10.16460/j.issn1008-9969.2024.01.052

• 循证护理 • 上一篇    下一篇

2型糖尿病患者合并骨质疏松风险预测模型的范围综述

史婷婷1, 李婷2a, 黄友鹏3a, 赵媛3b, 朱晓丽2b, 周梦娟3a, 陈云梅1   

  1. 1.红河卫生职业学院 护理学院,云南 蒙自 661100;
    2.大理大学第一附属医院 a.急诊科; b.内分泌科,云南 大理 671000;
    3.大理大学 a.护理学院; b.公共卫生学院,云南 大理 671000
  • 收稿日期:2023-09-02 出版日期:2024-01-10 发布日期:2024-02-19
  • 通讯作者: 陈云梅(1969-),女,云南武定人,本科学历,教授,院长。E-mail:964663529@qq.com
  • 作者简介:史婷婷(1991-),女,云南蒙自人,硕士,讲师。
  • 基金资助:
    云南省教育厅科学研究基金(2022Y878); 云南省科技厅科技计划项目(202101BA070001-118); 云南省大理市2021年科技计划项目(2021KBG057)

Risk prediction model of oteoporosis in patients with type 2 diabetes: a scoping review

SHI Ting-ting1, LI Ting2a, HUANG You-peng3a, ZHAO Yuan3b, ZHU Xiao-li2b, ZHOU Meng-juan3a, CHEN Yun-mei1   

  1. 1. School of Nursing, Honghe Health Vocational College, Mengzi 661100, China;
    2a. Dept. of Emergency; 2b. Dept. of Endocrinology, the First Affiliated Hospital of Dali University, Dali 671000, China;
    3a. School of Nursing; 3b. School of Public Health, Dali University, Dali 671000, China
  • Received:2023-09-02 Online:2024-01-10 Published:2024-02-19

摘要: 目的 对2型糖尿病患者并发骨质疏松的风险预测模型进行范围综述,为疾病科学防治及未来临床护理工作提供借鉴。方法 系统检索中英文数据库,对纳入文献进行文献偏倚风险评估,提取2型糖尿病患者骨质疏松发生率、模型构建情况、模型预测因子及性能等信息,并进行风险预测模型预测因子分类。结果 共纳入16项研究,涉及16个模型,2型糖尿病患者骨质疏松的患病率为14.4%~54.08%。模型效能总体较好,但模型构建的方法单一。年龄、糖尿病病程和体质指数是2型糖尿病患者并发骨质疏松风险预测模型的重要因子。结论 临床护理人员应重视2型糖尿病患者并发骨质疏松的高危因素,精准选择性能良好的评估工具指导护理实践。可借助可视化手段构建预测性能好、实用性强的模型,并通过前瞻性、多中心、外部验证不断优化模型,以期达到最佳的预测效果,便于及时干预。

关键词: 2型糖尿病, 骨质疏松, 预测模型, 风险预测, 范围综述

Abstract: Objective To conduct a scoping review on risk prediction model of osteoporosis in patients with type 2 diabetes, and to provide reference for its prevention and clinical nursing. Methods The Chinese and English databases were systematically searched, and the risk of literature bias was evaluated. The incidence of osteoporosis in patients with type 2 diabetes, model construction, model predictors and performance were extracted, and the predictors of risk prediction model were classified. Results Sixteen studies were included, involving 16 models. The prevalence of osteoporosis in patients with type 2 diabetes ranged from 14.4% to 54.08%. The overall effectiveness of the model was good, but the method of model construction was single. Age, duration of diabetes and body mass index were important factors in the risk prediction model of osteoporosis in patients with type 2 diabetes. Conclusion Nursing staff should pay attention to the high risk factors of osteoporosis in patients with type 2 diabetes, and evaluation tools with good performance should be considered to guide nursing practice. A model with good performance and strong practicability can be constructed by means of visualization, and be continuously optimized through forward-looking, multi-center and external verification in order to achieve the best prediction effect and provide timely intervention for the patients.

Key words: type 2 diabetes, osteoporosis, prediction model, risk prediction, scoping review

中图分类号: 

  • R473.58
[1] Prost S, Pesenti S, Fuentes S, et al.Treatment of osteoporotic vertebral fractures[J]. Orthop Traumatol-sur,2021,107(1S):102779.DOI:10.1016/j.otsr.2020.102779.
[2] Zheng Y, Ley SH, Hu FB.Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endoc,2018,14(2):88-98.DOI:10.1038/nrendo.2017.151.
[3] Wang L, Zhang D, Xu J.Association between the Geriatric Nutritional Risk Index,bone mineral density and osteoporosis in type 2 diabetes patients[J]. J Diabetes Investig,2020,11(4):956-963.DOI:10.1111/jdi.13196.
[4] Wu X, Zhai F, Chang A, et al.Application of machine learning algorithms to predict osteoporosis in postmenopausal women with type 2 diabetes mellitus[J].J Endocrinol Invest,2023,46(12):2535-2546.DOI:10.1007/s40618-023-02109-0.
[5] Moons KGM, De Groot JAH, Bouwmeester W, et al.Critical appraisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J]. PLoS Med,2014,11(10):e1001744.DOI:10.1371/journal.pmed.1001744.
[6] Moons KGM, Wolff RF, Riley RD, et al.PROBAST:a tool toassess risk of bias and applicability of prediction model studies:explanation and elaboration[J]. Ann Intern Med,2019,170(1):W1-W33. DOI:10.7326/M18-1377.
[7] 符玲玲. 2型糖尿病合并骨质疏松的危险因素及风险列线图模型的建立[J].吉林医学,2022,43(3):623-626.DOI:10.3969/j.issn.1004-0412.2022.03.016.
[8] 曾锦辉,王晓云,宋渊浩,等.2型糖尿病合并骨质疏松危险因素Logistic回归分析[J].中国卫生标准管理,2023,14(4):101-105. DOI:10.3969/j.issn.1674-9316.2023.04.022.
[9] 王秋怡,陈显英,符茂雄.2型糖尿病女性患者绝经后骨质疏松预测模型的构建与验证[J].中国现代医学杂志,2022,32(10):53-59.DOI:10.3969/j.issn.1005-8982.2022.10.010.
[10] 周影,潘卫民,肖欢,等.海口地区常住居民老年2型糖尿病患者骨质疏松发生风险列线图预测模型的建立与评估[J].中国老年学杂志,2022, 42(21):5251-5255.DOI:10.3969/j.issn.1005-9202.2022.21.029.
[11] 谢碧燕,陈小燕.中老年2型糖尿病合并骨质疏松症风险预测模型的构建与验证[J].中外医学研究, 2022,20(23):173-177.DOI:10.14033/j.cnki.cfmr.2022.23.044.
[12] 梁赟,虞艳芳. 2型糖尿病患者绝经后骨质异常与OSTA指数间的相关性研究[J].检验医学与临床, 2014,11(20):2822-2827.DOI:10.3969/j.issn.1672-9455.2014.20.010.
[13] 王环君,李琳,高海花,等.老年营养风险指数与老年男性2型糖尿病患者骨密度和骨质疏松症的关系[J].中国骨质疏松杂志,2021,27(12):1739-1744.DOI:10.3969/j.issn.1006-7108.2021.12.004.
[14] 倪会芳,李隽,丁源,等.中性粒细胞/淋巴细胞比值和单核细胞/高密度脂蛋白胆固醇比值预测绝经后2型糖尿病患者发生骨质疏松症的价值研究[J]. 中国全科医学,2022,25(18):2207-2214.DOI:10.12114/j.issn.1007-9572.2022.02.021.
[15] Tang JL, Pan BB, Shu Y, et al.Evaluation of two tools for the early screening of osteoporosis in postmenopausal Chinese women with type 2 diabetes mellitus[J]. J Int Med Res,2020,48(3):300060520903889.DOI:10.1177/0300060520903889.
[16] Wu Y, Xing X, Ye S, et al.Lipid levels related to osteoporosis in Patients with type 2 diabetes[J]. Exp Clin Endocrinol Diabetes, 2019, 127(7):468-472.DOI:10.1055/a-0735-9361.
[17] Raška I Jr, Rašková M, Zikán V, et al.Prevalence and risk Factors of osteoporosis in postmenopausal women with type 2 diabetes Mellitus[J]. Cent Eur J Public Health,2017,25(1):3-10. DOI:10.21101/cejph.a4717.
[18] Li T, Hu L, Yin XL, et al.Prevalence and risk factors of osteoporosis in patients with type 2 diabetes mellitus in Nanchang (China):a retrospective cohort study[J].Diabetes Metab Syndr Obes,2022(15):3039-3048.DOI:10.2147/DMSO.S372348.
[19] Sta Romana M, Li-Yu JT.Investigation of the relationship between type 2 diabetes and osteoporosis using Bayesian inference[J].J Clin Densitom,2007,10(4):386-390.DOI:10.1016/j.jocd.2007.08.001.
[20] Wang L, Zhang D, Xu J.Association between the Geriatric Nutritional Risk Index(GNRI), bone mineral density and osteoporosis in type 2 diabetes patients[J]. J Diabetes Investig,2020,11(4):956-963.DOI:10.1111/jdi.13196.
[21] Li JB, Zhang H, Yan L, et al.Homocysteine, an additional factor, is linked to osteoporosis in postmenopausal women with type 2 diabetes[J]. J Bone Miner Metab, 2014,32(6):718-24.DOI:10.1007/s00774-013-0548-4.
[22] Wen Y, Li H, Zhang X, et al.Correlation of osteoporosis in patients with newly diagnosed type 2 diabetes:a retrospective study in Chinese population[J].Front Endocrinol (Lausanne),2021(12):531904.DOI:10.3389/fendo.2021.531904.
[23] 张旋,罗丽娅,王瞭信,等.2型糖尿病合并骨质疏松患者外周血中VDR mRNA表达与25(OH) D、甘油三酯的关系研究[J].中国骨质疏松杂志,2019,25(6):742-746.DOI:10.3969/j.issn.1006-7108.2019.06.003.
[24] 李静,侯云霞,强万敏.癌症患者非计划性再入院风险预测模型的范围综述[J].中华护理杂志,2022, 57(9):1079-1087.DOI:10.3761/j.issn.0254-1769.2022.09.008.
[25] Zou Y, Zhao L, Zhang J, et al.Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease[J]. Ren Fail,2022,44(1):562-570.DOI:10.1080/0886022X.2022.2056053.
[26] Cooray SD, Boyle JA, Soldatos G, et al.Development, validation and clinical utility of a risk prediction model for adverse pregnancy outcomes in women with gestational diabetes: the PeRSonal GDM model[J]. E Clinical Medicine,2022(52):101637.DOI:10.1016/j.eclinm.2022.101637.
[27] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J].护理学报,2021,28(7):30-34.DOI:10.16460/j.issn1008-9969.2021.07.030.
[28] Li R, Yuan K, Yu X, et al.Construction and validation of risk prediction model for gestational diabetes based on a nomogram[J].Am J Transl Res,2023,15(2):1223-1230.
[29] Wang GX, Hu XY, Zhao HX, et al.Development and validation of a diabetic retinopathy risk prediction model for middle-aged patients with type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne),2023(14):1132036.DOI:10.3389/fendo.2023.1132036.
[30] Bu F, Deng XH, Zhan NN, et al.Development and validation of a risk prediction model for frailty in patients with diabetes[J].BMC Geriatr,2023,23(1):172.DOI:10.1186/s12877-023-03823-3.
[31] 张海燕,于卫华,张利,等. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J].护理学报,2023,30(22):13-19.DOI:10.16460/j.issn1008-9969.
[1] 王微, 路潜, 宋艳茹, 柯桑桑, 刘春蕾. 我国护理核心期刊近5年预测模型研究论文分析[J]. 护理学报, 2024, 31(1): 37-41.
[2] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
[3] 叶磊, 张爱琴, 荣芸, 夏广惠. 老年髋部骨折患者术后谵妄风险预测模型的系统评价[J]. 护理学报, 2023, 30(7): 48-52.
[4] 唐鸿霞, 张铭鹪, 陈梦杰, 钟梦婷, 刘漫, 胡凤慧, 王勤, 王晓夏, 孔莱熙, 郭茂婷, 熊真真. 糖尿病数字化管理APP对2型糖尿病患者血糖控制的效果研究[J]. 护理学报, 2023, 30(7): 71-74.
[5] 张红霞, 杨巧巧, 党晨珀, 张文芳, 张晓敏, 邵转兰. 老年性骨质疏松患者骨折风险预测工具的范围综述[J]. 护理学报, 2023, 30(3): 57-62.
[6] 何雅明, 吴建炜, 佘颖琪, 刘宁. PRECIS-2工具内涵及其应用进展的范围综述[J]. 护理学报, 2023, 30(24): 33-37.
[7] 孙菲, 刘敏, 胡珊珊, 吴蕾, 刘君, 李萍. 基于Meta分析构建早产儿母亲泌乳建立风险预测评分模型[J]. 护理学报, 2023, 30(23): 1-5.
[8] 杨楠楠, 蒋慧萍, 史婷奇. 基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2023, 30(23): 44-49.
[9] 张海燕, 于卫华, 张利, 任影, 郑俊俊. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J]. 护理学报, 2023, 30(22): 13-19.
[10] 方敏, 高兴莲, 柯稳, 王曾妍, 梁元元. 腹部消化系统手术患者术中低体温风险预测模型的构建与验证[J]. 护理学报, 2023, 30(20): 58-62.
[11] 周飞洋, 邓露, 龙柯宇, 杨婷婷, 谢琳琳, 吕倩, 郭春波. 老年人认知衰弱风险预测模型的系统评价[J]. 护理学报, 2023, 30(19): 45-50.
[12] 龚思媛, 廖春莲, 高燕, 刘继红, 李佳, 唐荣珠. 帕金森病患者吞咽障碍筛查工具的范围综述[J]. 护理学报, 2023, 30(18): 42-47.
[13] 刘雪琴, 刘晓辉, 平智广. 维持性血液透析患者营养不良风险列线图模型及在线计算器的构建与验证研究[J]. 护理学报, 2023, 30(16): 12-18.
[14] 王奕, 葛静玲, 王娟. 问题提示列表在肿瘤医患沟通中应用的范围综述[J]. 护理学报, 2023, 30(16): 57-62.
[15] 王若仙, 何斌, 王玉环, 刘柯汝, 唐雪婷, 赵淑华, 魏杉杉. 社区老年人骨质疏松性骨折风险感知偏差现况及影响因素分析[J]. 护理学报, 2023, 30(15): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
[1] 张兰萍, 吕森森, 何文俊, 陈江芸, 蔡毅媛, 李春萍, 刘思源, 钟冬梅, 李嘉琪, 谢昀筠, 黄婉晴, 陈晓珊, 徐东. 实施性研究综合框架(CFIR)更新版的解析和应用[J]. 护理学报, 2023, 30(11): 47 -52 .
[2] 陈坚, 王园, 崔艳丽, 罗彦嗣, 廖琳, 颜明玉, 张晓梅. 缺血性脑卒中后吞咽障碍患者经口摄食功能发展轨迹及影响因素分析[J]. 护理学报, 2023, 30(24): 1 -6 .
[3] 韩瑞娟, 张俊娟, 李瑞玲, 张士变, 潘卫宇. 全膝关节置换术患者结果期望管理方案的构建[J]. 护理学报, 2023, 30(24): 7 -11 .
[4] 张增梅, 王宇, 赵海运, 张莹, 金子, 聂云飞. 抛锚式教学联合Gibbs反思循环在手术室专科护士培训中的应用[J]. 护理学报, 2023, 30(24): 12 -15 .
[5] 朱芬芬, 汪婷, 秦慷. 基于专家示范的高仿真模拟教学对高职院校护生临床判断能力的影响[J]. 护理学报, 2023, 30(24): 16 -19 .
[6] 崔甜恬, 童宇平. 七步紧急护理评估框架的护理应用研究进展[J]. 护理学报, 2023, 30(24): 20 -23 .
[7] 张凤玲, 卢吉, 侯胜超. 国内肿瘤患者个案管理应用进展及展望[J]. 护理学报, 2023, 30(24): 24 -26 .
[8] 周帅, 江锦芳, 崔虹, 别逢桂, 周培明, 孙强, 谭叶. 非眼部手术全麻患者术中角膜损伤预防及管理的最佳证据总结[J]. 护理学报, 2023, 30(24): 27 -32 .
[9] 柯稳, 高兴莲, 余文静, 方敏, 王曾妍. 基于三维质量结构模型构建围手术期低体温预防护理质量指标体系[J]. 护理学报, 2024, 31(1): 1 -6 .
[10] 钱丽娟, 方熙茹, 罗桢妮, 蔡淑慧. 我国实施护士处方权的环境SWOT分析与建议[J]. 护理学报, 2024, 31(1): 7 -11 .