以质量求发展,以服务铸品牌

护理学报 ›› 2023, Vol. 30 ›› Issue (3): 57-62.doi: 10.16460/j.issn1008-9969.2023.03.057

• 循证护理 • 上一篇    下一篇

老年性骨质疏松患者骨折风险预测工具的范围综述

张红霞1, 杨巧巧2, 党晨珀2, 张文芳1, 张晓敏1, 邵转兰1   

  1. 1.甘肃中医药大学护理学院,甘肃 兰州 730000;
    2.中国人民解放军联勤保障部队第九四〇医院 运动医学科,甘肃 兰州 730050
  • 收稿日期:2022-09-30 出版日期:2023-02-10 发布日期:2023-03-14
  • 通讯作者: 杨巧巧(1979-),女,甘肃兰州人,本科学历,主任护师,运动医学科护士长,硕士研究生导师。E-mail:258995846@qq.com
  • 作者简介:张红霞(1998-),女,四川内江人,本科学历,硕士研究生在读,护士。
  • 基金资助:
    甘肃省青年科技基金计划(20JR10RA008); 甘肃省卫生行业科研计划项目(GSWSKY-2019-12)

Fracture risk prediction tools in elderly patients with osteoporosis: a scoping review

ZHANG Hong-xia1, YANG Qiao-qiao2, DANG Chen-po2, ZHANG Wen-fang1, ZHANG Xiao-min1, SHAO Zhuan-lan1   

  1. 1. School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China;
    2. Dept. of Sports Medicine,No.940 Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, China
  • Received:2022-09-30 Online:2023-02-10 Published:2023-03-14

摘要: 目的 综合分析老年性骨质疏松患者骨折风险预测工具,为研究人员开发或引入符合本国国情的预测工具提供参考。方法 采用范围综述方法,检索PubMed、Embase、Web of Science、中国知网、万方数据知识服务平台、维普中文科技期刊数据及中国生物医学文献数据库7个中英文数据库,由2名研究者独立筛选文献和提取数据,并进行偏倚风险及适用性评价。结果 最后纳入18篇英文文献,包括12项预测工具开发研究及6项预测工具效能验证研究,共涉及12个老年性骨质疏松患者骨折风险预测工具,工具类型主要为风险预测模型及风险评估表。结论 老年性骨质疏松患者骨折风险预测工具种类繁多,预测性能良好但总体偏倚风险较高。相关研究人员一方面应对现有的预测工具进行验证及校准,另一方面应基于本土数据开发低偏倚风险、高临床适用性的风险预测工具,为老年性骨质疏松患者的精准健康管理提供参考。

关键词: 老年性骨质疏松, 骨质疏松性骨折, 风险预测, 模型构建, 人口健康管理

Abstract: Objective To comprehensively analyze fracture risk prediction tools in senile osteoporosis patients, and provide reference for researchers to develop or introduce prediction tools in line with national conditions. Methods Scoping review was conducted and we searched 7 Chinese and English databases including PubMed, Embase, Web of Science, CNKI, Wanfang Data Knowledge Service Platform, VIP Chinese scientific journal data and China Biomedical Literature Database for eligible literature. Two researchers screened the literature and conducted data extraction, and assessment of risk of bias and applicability independently. Results Eighteen pieces of English literature were included, including 12 prediction tool development studies and 6 prediction tool efficacy validation studies, involving 12 fracture risk prediction tools in elderly patients with osteoporosis. The types of tools were mainly risk prediction models and risk assessment tables. Conclusion There are various kinds of fracture risk prediction tools for elderly patients with osteoporosis, with good prediction performance, but overall high risk of bias. The existing prediction tools should be verified and calibrated. Local data-based risk prediction tools with low risk of bias and high clinical applicability should be developed, so as to provide reference for the precise health management of elderly patients with osteoporosis.

Key words: senile osteoporosis, osteoporotic fractures, risk assessment, model construction, population health management

中图分类号: 

  • R473.59
[1] 闫坤,张瑞坤,吴雨伦,等.益骨汤治疗老年性骨质疏松症的临床疗效评价[J].中国骨质疏松杂志,2022,28(5):675-679. DOI:10.3969/j.issn.1006-7108.2022.05.010.
[2] 中华医学会骨质疏松和骨矿盐疾病分会.中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):317-318. DOI:10.3969/j.issn.1674-2591.2019.04.001.
[3] Falaschi P, Marsh D, editors. Orthogeriatrics: The management of older patients with fragility fractures[M]. Cham (CH): Springer, 2021. DOI:10.1007/978-3-030-48126-1.
[4] Akkawi I, Zmerly H.Osteoporosis: current concepts[J].Joints, 2018,6(2):122-127. DOI: 10.1055/s-0038-1660790.
[5] Migliorini F, Giorgino R, Hildebrand F, et al.Fragility fractures: risk factors and management in the elderly[J]. Medicina(Kaunas),2021,57(10):1119.DOI:10.3390/medicina57101119.
[6] 夏维波. 骨质疏松症防治中的难点和应对[J].国际内分泌代谢杂志,2022,42(3):165-169.DOI:10.3760/cma.j.cn121383-20220406-04011.
[7] 戴婷,马彩莉,张孟喜,等.老年人骨折风险评估工具的研究进展[J].护理学杂志,2020,35(12):106-110.?DOI:10.3870/j.issn.1001-4152.2020.12.106.
[8] 陈香萍,张奕,庄一渝,等.PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志,2020,20(6):737-744. DOI:10.7507/1672-2531.201910087.
[9] 邬兰,张永,曾宪涛.QUADAS-2在诊断准确性研究的质量评价工具中的应用[J].湖北医药学院学报,2013,32(3):201-208. DOI:10.7543/j.issn.1006-9674.2013.03.004.
[10] Nguyen ND, Frost SA, Center JR, et al.Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks[J]. Osteoporos Int, 2008,19(10):1431-1444. DOI:10.1007/s00198-008-0588-0.
[11] Kanis JA, Johnell O, Oden A, et al.FRAX and the assessment of fracture probability in men and women from the UK[J]. Osteoporos Int, 2008,19(4):385-397. DOI:10.1007/s00198-007-0543-5.
[12] Fujiwara S, Nakamura T, Orimo H, et al.Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX)[J]. Osteoporos Int, 2008,19(4):429-435. DOI:10.1007/s00198-007-0544-4.
[13] Hippisley-Cox J, Coupland C.Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores[J]. BMJ, 2009,339:b4229. DOI:10.1136/bmj.b4229.
[14] Leslie WD, Lix LM, Johansson H, et al.Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration[J]. J Bone Miner Res, 2010,25(11):2350-2358. DOI:10.1002/jbmr.123.
[15] Kim HY, Jang EJ, Park B, et al.Development of a Korean Fracture Risk Score(KFRS) for predicting osteoporotic fracture risk: analysis of data from the Korean National Health Insurance Service[J]. PLoS One, 2016,11(7):e0158918. DOI:10.1371/journal.pone.0158918.
[16] Francesco L, Elisa B, Raffaella M, et al.Assessing risk of osteoporotic fractures in primary care: development and validation of the FRA-HS algorithm[J]. Calcif Tissue Int, 2017,100(6):537-549. DOI:10.1007/s00223-016-0230-7.
[17] Rubin KH, Möller S, Holmberg T, et al.A New Fracture Risk Assessment Tool (FREM) based on public health registries[J]. J Bone Miner Res, 2018,33(11):1967-1979.DOI:10.1002/jbmr.3528.
[18] Lesnyak O, Ismailov S, Shakirova M, et al.Epidemiology of hip fracture and the development of a FRAX model for Uzbekistan[J]. Arch Osteoporos, 2020,15(1):119. DOI:10.1007/s11657-020-00792-7.
[19] Saleh YAL, Sulimani RA, Alomary S, et al.Incidence of hip fracture in Saudi Arabia and the development of a FRAX model[J]. Arch Osteoporos, 2022,17(1):56.DOI:10.1007/s11657-022-01085-x.
[20] Sandhu SK, Nguyen ND, Center JR, et al.Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram[J]. Osteoporos Int, 2010,21(5):863-871. DOI:10.1007/s00198-009-1026-7.
[21] Collins GS, Mallett S, Altman DG.Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFracture Scores[J]. BMJ, 2011,342:d3651. DOI:10.1136/bmj.d3651.
[22] Tamaki J, Iki M, Kadowaki E, et al.Fracture risk prediction using FRAX® : a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) cohort study[J]. Osteoporos Int, 2011,22(12):3037-3045. DOI:10.1007/s00198-011-1537-x.
[23] Wang J, Wang X, Fang Z, et al.The effect of FRAX on the prediction of osteoporotic fractures in urban middle-aged and elderly healthy Chinese adults[J]. Clinics (Sao Paulo), 2017,72(5):289-293. DOI:10.6061/clinics/2017(05)06.
[24] Singh V, Pal AK, Biswas D, et al.Identification of patients at high risk of fragility fractures in an Indian clinical setting using FRAX[J]. Arch Osteoporos, 2020,15(1):131. DOI:10.1007/s11657-020-00807-3.
[25] Skjødt MK, Möller S, Hyldig N, et al.Validation of the Fracture Risk Evaluation Model (FREM) in predicting major osteoporotic fractures and hip fractures using administrative health data[J]. Bone, 2021,147:115934. DOI:10.1016/j.bone.2021.115934.
[26] Hsieh CI, Zheng K, Lin C, et al.Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning[J]. Nat Commun, 2021,12(1):5472. DOI:10.1038/s41467-021-25779-x.
[27] Leslie WD, Berger C, Langsetmo L, et al.Construction and validation of a simplified fracture risk assessment tool for Canadian women and men: results from the CaMos and Manitoba cohorts[J]. Osteoporos Int, 2011,22(6):1873-1883. DOI:10.1007/s00198-010-1445-5.
[28] Austin PC, Steyerberg EW.Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models[J]. Stat Methods Med Res, 2017,26(2):796-808. DOI:10.1177/0962280214558972.
[29] 马远征,王以朋,刘强,等.中国老年骨质疏松诊疗指南(2018)[J].中国老年学杂志,2019,39(11):2557-2575.DOI:10.3969/j.issn.1005-9202.2019.11.001.
[30] Beaudoin C, Moore L, Gagné M, et al.Performance of predictive tools to identify individuals at risk of non-traumatic fracture: a systematic review, meta-analysis, and meta-regression[J]. Osteoporos Int, 2019,30(4):721-740. DOI:10.1007/s00198-019-04919-6.
[31] 夏维波. 骨质疏松症高骨折风险患者的识别与防治策略[J].中华骨质疏松和骨矿盐疾病杂志,2020, 13(6):493-498. DOI:10.3969/j.issn.1674-2591.2020.06.001.
[32] Ho-Le TP, Center JR, Eisman JA, et al.Prediction of bone mineral density and fragility fracture by genetic profiling[J]. J Bone Miner Res, 2017,32(2):285-293. DOI:10.1002/jbmr.2998.
[33] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J].护理学报,2021, 28(7):30-34. DOI:10.16460/j.issn1008-9969.2021.07.030.
[1] 庞雪滢, 胡少华, 李慧, 尹丹乔, 张尚鑫, 杨晓东. 直肠癌患者保肛术1年后发生重度低位前切除综合征列线图预测模型的构建[J]. 护理学报, 2022, 29(11): 5-10.
[2] 郭盛丽, 袁薇, 朱婷, 林威娜, 陈晓容, 夏美燕. 患者结肠镜检查前肠道准备失败风险预测模型的系统评价[J]. 护理学报, 2022, 29(1): 35-40.
[3] 严露培, 姚丽丽, 李跃荣, 陈豪, 刘文文, 赵庆华, 肖明朝. 手术患者非计划性术中低体温风险预测模型研究进展[J]. 护理学报, 2021, 28(6): 13-16.
[4] 陆静钰, 杨连招, 陈玲, 杨永. 社区老年高血压患者轻度认知功能障碍风险预测模型的构建与验证[J]. 护理学报, 2021, 28(24): 42-50.
[5] 杨振, 张会君. 老年失智症患者养老护理员照护性抑郁风险预测模型的构建[J]. 护理学报, 2021, 28(21): 7-11.
[6] 陈莉, 沙菲, 李婷. 急性呼吸窘迫综合征风险预测模型的研究进展[J]. 护理学报, 2021, 28(15): 30-34.
[7] 武玉洁, 邢乃姣, 韩丽, 刘盼盼, 赵迪, 赵梦璐, 王爱敏. 社区老年人居家不出危险因素分析及风险预测模型构建[J]. 护理学报, 2020, 27(8): 11-15.
[8] 孙阳阳, 隋萍, 刘晓红, 董玉娇, 王娅楠. 急性冠脉综合征患者PCI术后1年发生不良心血管事件风险预测模型的构建及评价[J]. 护理学报, 2020, 27(19): 11-16.
[9] 陈俊杉, 范杰梅, 余金甜, 张爱琴. 2种预测模型在神经外科ICU患者谵妄风险预测中的应用价值比较[J]. 护理学报, 2020, 27(18): 6-10.
[10] 旷小羿, 侯惠如. 基于电子病历数据的风险预测模型在临床护理中的应用现状[J]. 护理学报, 2020, 27(16): 21-24.
[11] 张晓璐, 王国蓉, 郑莹莹, 杨璐. 乳腺癌术后引流管留置时间危险因素分析及风险预测模型研究[J]. 护理学报, 2019, 26(23): 1-5.
[12] 谈莉萍,段霞,王毅,庄英. 冠状动脉旁路移植术后患者谵妄风险预测因子的研究进展[J]. 护理学报, 2017, 24(24): 21-23.
Viewed
Full text


Abstract

Cited

  Shared   
[1] 何万巧, 盖薇, 周春兰, 张艺祯, 陶艳玲. 积极心理学视角下维持性血液透析患者生活质量现状及影响因素分析[J]. 护理学报, 2023, 30(2): 12 -16 .
[2] 王冲, 梁灿, 刘俐惠. 护理夜班绩效管理系统的构建与实施[J]. 护理学报, 2023, 30(2): 31 -34 .
[3] 刘莎, 陈玲, 李甜甜, 张丹莉, 蔡文智. 孕产妇盆底肌训练自我效能发展轨迹及其对产后尿失禁的影响[J]. 护理学报, 2023, 30(3): 1 -5 .
[4] 高杰, 李惠萍, 宋江艳, 李嘉欣, 周梦珂, 张珊珊, 庞自云. 以应对为焦点的乳腺癌患者家庭韧性干预方案构建[J]. 护理学报, 2023, 30(3): 6 -10 .
[5] 董世攀, 梁小英, 黄兰怡, 梁善英, 梁锦波, 代炜, 赵玉玲, 黄沂. 功能性腹胀患者健康促进行为量表的汉化及信效度检验[J]. 护理学报, 2023, 30(3): 11 -15 .
[6] 刘蔚, 李育玲, 韩清华, 蔺彦丽. 基于社会学习理论实习护生同伴支持教育方案的构建[J]. 护理学报, 2023, 30(3): 16 -19 .
[7] 张玉芬, 汪晖, 胡凯利. 临床护士道德困境的潜在剖面分析及其与道德敏感性的关系研究[J]. 护理学报, 2023, 30(3): 20 -25 .
[8] 郑伟, 秦英, 江庆华. 基于Octave软件与铝箔腐蚀法对超声清洗时器械摆放位置的研究[J]. 护理学报, 2023, 30(3): 26 -29 .
[9] 黄珊, 袁娟, 颜贵明. 基于自由联想法本科实习护生群体情绪分析[J]. 护理学报, 2023, 30(3): 30 -34 .
[10] 田恬, 李转珍, 都芳芳, 朱永燕, 李伟丽, 万菲菲. 基于转型冲击理论构建新护士护理安全培训内容体系[J]. 护理学报, 2023, 30(3): 35 -39 .