护理学报 ›› 2023, Vol. 30 ›› Issue (3): 57-62.doi: 10.16460/j.issn1008-9969.2023.03.057
张红霞1, 杨巧巧2, 党晨珀2, 张文芳1, 张晓敏1, 邵转兰1
ZHANG Hong-xia1, YANG Qiao-qiao2, DANG Chen-po2, ZHANG Wen-fang1, ZHANG Xiao-min1, SHAO Zhuan-lan1
摘要: 目的 综合分析老年性骨质疏松患者骨折风险预测工具,为研究人员开发或引入符合本国国情的预测工具提供参考。方法 采用范围综述方法,检索PubMed、Embase、Web of Science、中国知网、万方数据知识服务平台、维普中文科技期刊数据及中国生物医学文献数据库7个中英文数据库,由2名研究者独立筛选文献和提取数据,并进行偏倚风险及适用性评价。结果 最后纳入18篇英文文献,包括12项预测工具开发研究及6项预测工具效能验证研究,共涉及12个老年性骨质疏松患者骨折风险预测工具,工具类型主要为风险预测模型及风险评估表。结论 老年性骨质疏松患者骨折风险预测工具种类繁多,预测性能良好但总体偏倚风险较高。相关研究人员一方面应对现有的预测工具进行验证及校准,另一方面应基于本土数据开发低偏倚风险、高临床适用性的风险预测工具,为老年性骨质疏松患者的精准健康管理提供参考。
中图分类号:
[1] 闫坤,张瑞坤,吴雨伦,等.益骨汤治疗老年性骨质疏松症的临床疗效评价[J].中国骨质疏松杂志,2022,28(5):675-679. DOI:10.3969/j.issn.1006-7108.2022.05.010. [2] 中华医学会骨质疏松和骨矿盐疾病分会.中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):317-318. DOI:10.3969/j.issn.1674-2591.2019.04.001. [3] Falaschi P, Marsh D, editors. Orthogeriatrics: The management of older patients with fragility fractures[M]. Cham (CH): Springer, 2021. DOI:10.1007/978-3-030-48126-1. [4] Akkawi I, Zmerly H.Osteoporosis: current concepts[J].Joints, 2018,6(2):122-127. DOI: 10.1055/s-0038-1660790. [5] Migliorini F, Giorgino R, Hildebrand F, et al.Fragility fractures: risk factors and management in the elderly[J]. Medicina(Kaunas),2021,57(10):1119.DOI:10.3390/medicina57101119. [6] 夏维波. 骨质疏松症防治中的难点和应对[J].国际内分泌代谢杂志,2022,42(3):165-169.DOI:10.3760/cma.j.cn121383-20220406-04011. [7] 戴婷,马彩莉,张孟喜,等.老年人骨折风险评估工具的研究进展[J].护理学杂志,2020,35(12):106-110.?DOI:10.3870/j.issn.1001-4152.2020.12.106. [8] 陈香萍,张奕,庄一渝,等.PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志,2020,20(6):737-744. DOI:10.7507/1672-2531.201910087. [9] 邬兰,张永,曾宪涛.QUADAS-2在诊断准确性研究的质量评价工具中的应用[J].湖北医药学院学报,2013,32(3):201-208. DOI:10.7543/j.issn.1006-9674.2013.03.004. [10] Nguyen ND, Frost SA, Center JR, et al.Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks[J]. Osteoporos Int, 2008,19(10):1431-1444. DOI:10.1007/s00198-008-0588-0. [11] Kanis JA, Johnell O, Oden A, et al.FRAX and the assessment of fracture probability in men and women from the UK[J]. Osteoporos Int, 2008,19(4):385-397. DOI:10.1007/s00198-007-0543-5. [12] Fujiwara S, Nakamura T, Orimo H, et al.Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX)[J]. Osteoporos Int, 2008,19(4):429-435. DOI:10.1007/s00198-007-0544-4. [13] Hippisley-Cox J, Coupland C.Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores[J]. BMJ, 2009,339:b4229. DOI:10.1136/bmj.b4229. [14] Leslie WD, Lix LM, Johansson H, et al.Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration[J]. J Bone Miner Res, 2010,25(11):2350-2358. DOI:10.1002/jbmr.123. [15] Kim HY, Jang EJ, Park B, et al.Development of a Korean Fracture Risk Score(KFRS) for predicting osteoporotic fracture risk: analysis of data from the Korean National Health Insurance Service[J]. PLoS One, 2016,11(7):e0158918. DOI:10.1371/journal.pone.0158918. [16] Francesco L, Elisa B, Raffaella M, et al.Assessing risk of osteoporotic fractures in primary care: development and validation of the FRA-HS algorithm[J]. Calcif Tissue Int, 2017,100(6):537-549. DOI:10.1007/s00223-016-0230-7. [17] Rubin KH, Möller S, Holmberg T, et al.A New Fracture Risk Assessment Tool (FREM) based on public health registries[J]. J Bone Miner Res, 2018,33(11):1967-1979.DOI:10.1002/jbmr.3528. [18] Lesnyak O, Ismailov S, Shakirova M, et al.Epidemiology of hip fracture and the development of a FRAX model for Uzbekistan[J]. Arch Osteoporos, 2020,15(1):119. DOI:10.1007/s11657-020-00792-7. [19] Saleh YAL, Sulimani RA, Alomary S, et al.Incidence of hip fracture in Saudi Arabia and the development of a FRAX model[J]. Arch Osteoporos, 2022,17(1):56.DOI:10.1007/s11657-022-01085-x. [20] Sandhu SK, Nguyen ND, Center JR, et al.Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram[J]. Osteoporos Int, 2010,21(5):863-871. DOI:10.1007/s00198-009-1026-7. [21] Collins GS, Mallett S, Altman DG.Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFracture Scores[J]. BMJ, 2011,342:d3651. DOI:10.1136/bmj.d3651. [22] Tamaki J, Iki M, Kadowaki E, et al.Fracture risk prediction using FRAX® : a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) cohort study[J]. Osteoporos Int, 2011,22(12):3037-3045. DOI:10.1007/s00198-011-1537-x. [23] Wang J, Wang X, Fang Z, et al.The effect of FRAX on the prediction of osteoporotic fractures in urban middle-aged and elderly healthy Chinese adults[J]. Clinics (Sao Paulo), 2017,72(5):289-293. DOI:10.6061/clinics/2017(05)06. [24] Singh V, Pal AK, Biswas D, et al.Identification of patients at high risk of fragility fractures in an Indian clinical setting using FRAX[J]. Arch Osteoporos, 2020,15(1):131. DOI:10.1007/s11657-020-00807-3. [25] Skjødt MK, Möller S, Hyldig N, et al.Validation of the Fracture Risk Evaluation Model (FREM) in predicting major osteoporotic fractures and hip fractures using administrative health data[J]. Bone, 2021,147:115934. DOI:10.1016/j.bone.2021.115934. [26] Hsieh CI, Zheng K, Lin C, et al.Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning[J]. Nat Commun, 2021,12(1):5472. DOI:10.1038/s41467-021-25779-x. [27] Leslie WD, Berger C, Langsetmo L, et al.Construction and validation of a simplified fracture risk assessment tool for Canadian women and men: results from the CaMos and Manitoba cohorts[J]. Osteoporos Int, 2011,22(6):1873-1883. DOI:10.1007/s00198-010-1445-5. [28] Austin PC, Steyerberg EW.Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models[J]. Stat Methods Med Res, 2017,26(2):796-808. DOI:10.1177/0962280214558972. [29] 马远征,王以朋,刘强,等.中国老年骨质疏松诊疗指南(2018)[J].中国老年学杂志,2019,39(11):2557-2575.DOI:10.3969/j.issn.1005-9202.2019.11.001. [30] Beaudoin C, Moore L, Gagné M, et al.Performance of predictive tools to identify individuals at risk of non-traumatic fracture: a systematic review, meta-analysis, and meta-regression[J]. Osteoporos Int, 2019,30(4):721-740. DOI:10.1007/s00198-019-04919-6. [31] 夏维波. 骨质疏松症高骨折风险患者的识别与防治策略[J].中华骨质疏松和骨矿盐疾病杂志,2020, 13(6):493-498. DOI:10.3969/j.issn.1674-2591.2020.06.001. [32] Ho-Le TP, Center JR, Eisman JA, et al.Prediction of bone mineral density and fragility fracture by genetic profiling[J]. J Bone Miner Res, 2017,32(2):285-293. DOI:10.1002/jbmr.2998. [33] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J].护理学报,2021, 28(7):30-34. DOI:10.16460/j.issn1008-9969.2021.07.030. |
[1] | 庞雪滢, 胡少华, 李慧, 尹丹乔, 张尚鑫, 杨晓东. 直肠癌患者保肛术1年后发生重度低位前切除综合征列线图预测模型的构建[J]. 护理学报, 2022, 29(11): 5-10. |
[2] | 郭盛丽, 袁薇, 朱婷, 林威娜, 陈晓容, 夏美燕. 患者结肠镜检查前肠道准备失败风险预测模型的系统评价[J]. 护理学报, 2022, 29(1): 35-40. |
[3] | 严露培, 姚丽丽, 李跃荣, 陈豪, 刘文文, 赵庆华, 肖明朝. 手术患者非计划性术中低体温风险预测模型研究进展[J]. 护理学报, 2021, 28(6): 13-16. |
[4] | 陆静钰, 杨连招, 陈玲, 杨永. 社区老年高血压患者轻度认知功能障碍风险预测模型的构建与验证[J]. 护理学报, 2021, 28(24): 42-50. |
[5] | 杨振, 张会君. 老年失智症患者养老护理员照护性抑郁风险预测模型的构建[J]. 护理学报, 2021, 28(21): 7-11. |
[6] | 陈莉, 沙菲, 李婷. 急性呼吸窘迫综合征风险预测模型的研究进展[J]. 护理学报, 2021, 28(15): 30-34. |
[7] | 武玉洁, 邢乃姣, 韩丽, 刘盼盼, 赵迪, 赵梦璐, 王爱敏. 社区老年人居家不出危险因素分析及风险预测模型构建[J]. 护理学报, 2020, 27(8): 11-15. |
[8] | 孙阳阳, 隋萍, 刘晓红, 董玉娇, 王娅楠. 急性冠脉综合征患者PCI术后1年发生不良心血管事件风险预测模型的构建及评价[J]. 护理学报, 2020, 27(19): 11-16. |
[9] | 陈俊杉, 范杰梅, 余金甜, 张爱琴. 2种预测模型在神经外科ICU患者谵妄风险预测中的应用价值比较[J]. 护理学报, 2020, 27(18): 6-10. |
[10] | 旷小羿, 侯惠如. 基于电子病历数据的风险预测模型在临床护理中的应用现状[J]. 护理学报, 2020, 27(16): 21-24. |
[11] | 张晓璐, 王国蓉, 郑莹莹, 杨璐. 乳腺癌术后引流管留置时间危险因素分析及风险预测模型研究[J]. 护理学报, 2019, 26(23): 1-5. |
[12] | 谈莉萍,段霞,王毅,庄英. 冠状动脉旁路移植术后患者谵妄风险预测因子的研究进展[J]. 护理学报, 2017, 24(24): 21-23. |
|