以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (19): 12-18.doi: 10.16460/j.issn1008-9969.2024.19.012

Previous Articles     Next Articles

Influencing factors of cognitive frailty in community-dwelling elderly individuals based on Bayesian network model

HAO Yang, QIN Yan-mei, MAO Mei-qi, ZHAO Ya-ning, LIU Yao, HAN Ying   

  1. School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063200, China
  • Received:2024-01-05 Online:2024-10-10 Published:2024-11-07

Abstract: Objective To analyze the influencing factors of cognitive frailty in community-dwelling elderly individuals and their network relationships, and to provide scientific basis for reducing the occurrence of cognitive frailty more effectively. Methods Convenience sampling was used to select 1 449 elderly people from 8 communities in Tangshan City from August 2022 to June 2023, and they were investigated by using the General Information Questionnaire, FRAIL Scale, Mini-Mental State Examination, Short-Form Mini-Nutritional Assessment, Center for Epidemiologic Studies Depression Scale, and the Digital Health Literacy Assessment Scale for the Community-dwelling Elderly. The influencing factors of cognitive frailty were analyzed and a Bayesian network model was built. Results A total of 439 pairs of respondents were successfully matched with age, sex, marital status, residence status, education background and average monthly income as covariates. Binary logistic regression analysis model after matching propensity scores showed that chronic disease (OR=4.500), poor sleep duration (OR=2.398), malnutrition (OR=1.440), no physical exercise (OR=2.398), depression (OR=4.586), and low digital health literacy (OR=1.574) were risk factors for cognitive frailty (all P<0.05). Bayesian network model after propensity score matching showed that chronic disease, sleep duration, nutrition status, physical exercise, and depression were directly related to cognitive frailty. Chronic disease was indirectly related to cognitive frailty through sleep, nutritional status and digital health literacy; digital health literacy was indirectly related to cognitive frailty through sleep duration and nutritional status; physical exercise was indirectly related to cognitive frailty through depression. When participants were well-nourished, with poor sleep duration, with chronic disease(s), physically active, and without depression, the risk of cognitive frailty was 0.460. Conclusion Bayesian network model reveals the direct and indirect factors and correlation strength of cognitive frailty among the elderly in the community, clarifies the complex network relationship between the factors, and provides scientific basis for community health service personnel to reduce the incidence of cognitive frailty more effectively and propose targeted intervention measures.

Key words: elderly people, community, cognitive frailty, propensity score matching, Bayesian network model

CLC Number: 

  • R473.2
[1] 赵瑞雪,马雅军,刘惠,等.认知衰弱诊治的研究进展[J].基础医学与临床, 2021, 41(6):895-898. DOI:10.16352/j.issn.1001-6325.2021.06.022.
[2] 周闯,金学勤,郭正丽,等.不同机器学习算法的社区老年人认知衰弱风险预测模型比较[J].护理学杂志,2023,38(19):1-5. DOI:10.3870/j.issn.1001-4152.2023.19.001.
[3] 陈颖勇,张正敏,左倩倩,等.广州市某社区老年人可逆性认知衰弱现状及影响因素[J].解放军护理杂志, 2022,39(6):13-16. DOI:10.3969/j.issn.1008-9993.2022.06.004.
[4] 刘玥婷,范俊瑶,赵慧敏,等.老年人认知衰弱对不良健康结局影响的研究进展[J].护理研究,2020,34(18):3277-3282. DOI:10.12102/j.issn.1009-6493.2020.18.016.
[5] Baoyu C, Mingting W, Qin H, et al.Impact of frailty, mild cognitive impairment and cognitive frailty on adverse health outcomes among community-dwelling older adults: a systematic review and Meta-analysis[J]. Front Med (Lausanne),2022,31(9):1009794. DOI:10.3389/fmed.2022.1009794.
[6] 林丽玉,许丽春,张鑫,等.老年认知衰弱的危险因素Meta分析[J].现代预防医学,2022,49(9):1653-1658.
[7] Topuz K, Davazdahemami B, Delen D.A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases[J]. Ann Oper Res,2023,17:1-25. DOI:10.1007/s10479-023-05377-4.
[8] Navarro-Pardo E, Facal D, Campos-Magdaleno M, et al.Prevalence of cognitive frailty, do psychosocial-related factors matter?[J]. Brain sciences, 2020, 10(12):968. DOI:10.3390/brainsci10120968.
[9] 廉鹏飞,刘璋,曾燕,等.社区老年人体智锻炼与轻度认知障碍患病关联性的城乡差异[J].中华疾病控制杂志,2023,27(10):1128-1132.DOI:10.16462/j.cnki.zhjbkz.2023.10.003.
[10] 常文龄,李佳欣,倪卫桂,等.不良睡眠时长与中老年人记忆力及认知功能的关系[J].现代预防医学, 2023, 50(14):2613-2619. DOI:10.20043/j.cnki.MPM.202210638.
[11] Rubenstein LZ, Harker JO, Salvà A, et al.Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF)[J]. Gerontol A Biol Sci Med Sci,2001,56(6):366-372.DOI:10.1093/gerona/56.6.m366.
[12] 张欢欢,王翠平,赵敏,等.利用微型营养评价法和微型营养评价精法评价社区老年人的营养状况[J].山东大学学报(医学版),2017, 55(11):65-70. DOI:10.6040/j.Issn.1671-7554.0.2017.107.
[13] Andresen EM, Malmgren JA, Carter WB, et al.Screening for depression in well older adults: evaluation of a short form of the CES-D(Center for Epidemiologic Studies Depression Scale)[J]. Am J Prev Med,1994,10(2):77-84.
[14] 黄庆波,王晓华,陈功.10项流调中心抑郁自评量表在中国中老人群中的信效度[J].中国健康心理学杂志,2015,23(7):1036-1041. DOI:10.13342/j.cnki.cjhp.2015.07.023.
[15] 刘思奇,付晶晶,孔德辉,等.社区老年人数字健康素养评估量表的编制及信效度检验[J].护理研究, 2021, 35(23):4169-4174. DOI:10.12102/j.issn.1009-6493.2021.23.006.
[16] MacCallum RC, Zhang S, Preacher KJ, et al. On the practice of dichotomization of quantitative variables[J]. Psychol Methods,2002,7(1):19-40. DOI:10.1037/1082-989x.7.1.19.
[17] Morley JE, Malmstrom TK, Miller DK.A simple frailty questionnaire(FRAIL) predicts outcomes in middle aged African Americans[J]. Nutr Health Aging,2012,16:601-608. DOI:10.1007/s12603-012-0084-2.
[18] 卫尹,曹艳佩,杨晓莉,等.老年住院患者衰弱综合征现状及影响因素[J].复旦学报(医学版),2018,45(4):496-502. DOI:10.3969/j.issn.1672-8467.2017.04.010.
[19] Folstein MF, Folstein SE, McHugh PR."Mini-mental state". A practical method for grading the cognitive state of patients for the clinician[J]. Psychiatr Res,1975,12(3):189-198. DOI:10.1016/0022-3956(75)90026-6.
[20] 李格,沈漁邨,陈昌惠,等.老年痴呆简易测试方法研究——MMSE在城市老年居民中的测试[J].中国心理卫生杂志,1988(1):13-18.
[21] 常文龄,李佳欣,倪卫桂,等.不良睡眠时长与中老年人记忆力及认知功能的关系[J].现代预防医学, 2023, 50(14):2613-2619. DOI:10.20043/j.cnki.MPM.202210638.
[22] Kelaiditi E, Cesari M, Canevelli M, et al.Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group[J]. J Nutr Health Aging,2013,17(9):726-734. DOI:10.1007/s12603-013-0367-2.
[23] 卢珍珍,赵恩慧,黄丽红.PS与DRS匹配对已测量混杂因素的控制效果评价[J].中华疾病控制杂志, 2024,28(2):241-248. DOI:10.16462/j.cnki.zhjbkz.2024.02.018.
[24] 陈颖勇,张正敏,左倩倩,等.社区老年人认知衰弱风险预测模型的构建及验证[J].中华护理杂志, 2022, 57(2):197-203. DOI:10.3761/j.issn.0254-1769.2022.02.012.
[25] 姚晶,刘伟,李娜,等.我国老年人认知衰弱影响因素及健康指导研究进展[J].中国健康教育,2023, 39(8):715-719. DOI:10.16168/j.cnki.issn.1002-9982.2023.08.008.
[26] 任影,于卫华,张利.医养结合型养老机构老年人可逆性认知衰弱现状及影响因素分析[J].护理学报,2023,30(23):6-11. DOI:10.16460/j.issn1008-9969.2023.23.006.
[27] Minchao Li, Nan Wang, Matthew E Dupre.Association between the self-reported duration and quality of sleep and cognitive function among middle-aged and older adults in China[J]. J Affect Disorders, 2022,304:20-27. DOI:10.1016/j.jad.2022.02.039.
[28] 李惊鸿,黄欢欢,谢颖,等.369例重庆社区高血压老年患者衰弱与营养不良共病现状及影响因素分析[J].护理学报,2021,28(22):70-74. DOI:10.16460/j.issn1008-9969.2021.22.070.
[29] 周飞洋,邓露,龙柯宇,等.老年人认知衰弱风险预测模型的系统评价[J].护理学报,2023,30(19):45-50. DOI:10.16460/j.issn1008-9969.2023.19.045.
[30] Panza F, Lozupone M, Solfrizzi V, et al.Different cognitive frailty models and health- and cognitive-related outcomes in older age:from epidemiology to prevention[J]. Alzheimers Dis,2018,62(3):993-1012. DOI:10.3233/JAD-170963.
[31] Wu KY, Lin KJ, Chen CH, et al.Diversity of neurodegenerative pathophysiology in nondemented patients with major depressive disorder: evidence of cerebral amyloidosis and hippocampal atrophy[J]. Brain Behav,2018,8(7):e01016. DOI:10.1002/brb3.1016. Epub 2018 Jun 21.
[32] Angulo J, El Assar M, álvarez-Bustos A, et al.Physical activity and exercise: Strategies to manage frailty[J]. Redox Biol,2020,35:101513. DOI:10.1016/j.redox.2020.101513.
[33] Taveira A, Sousa B, Costa P, et al.Health management of malnourished elderly in primary health care: a scoping review[J]. BMC Prim Care, 2022, 23(1):272. DOI:10.1186/s12875-022-01883-9.
[34] Huang SH, Chen SC, Geng JH, et al.Metabolic syndrome and high-obesity-related indices are associated with poor cognitive function in a large Taiwanese population study older than 60 years[J]. Nutrients,2022,14(8):1535. DOI:10.3390/nu14081535.
[35] Moon JH, Huh JS, Won CW, et al.Is polypharmacy associated with cognitive frailty in the elderly? Results from the Korean frailty and aging cohort study[J]. J Nutr Health Aging, 2019,23(10):958-965. DOI:10.1007/s12603-019-1274-y.
[36] 孙明楠,孙晓峰,王海涛,等.老年糖尿病病人衰弱现状及影响因素[J].护理研究,2024,38(2):280-286. DOI:10.12102/j.issn.1009-6493.2024.02.014.
[37] 张佳弛,肖淑娟,薛雅卿,等.慢性病对老年人生命质量影响:睡眠质量的中介作用和社会参与调节作用[J].中国预防医学杂志, 2023,24(11):1145-1150.DOI:10.16506/j.1009-6639.2023.11.002.
[38] 汤红梅,许慧琳,郭琪,等.上海市闵行社区老年人营养不良风险评估及其影响因素[J].环境与职业医学,2023,40(9):1068-1073. DOI:10.11836/JEOM22504.
[1] XUE Rong, ZHANG Kai-li, CHEN Bao-yun, MA Rong-hui, ZHANG Yu-xin. Multidimensional frailty development trajectory and its influencing factors in middle-aged and elderly stroke patients [J]. Journal of Nursing, 2024, 31(6): 6-12.
[2] DENG Yue, HU Yu-fan, WANG Ran, ZHANG Yuan-xing, WANG Fang, YUAN Ping, CHEN Lu. Qualitative studies on experience and needs of elderly patients receiving telemedicine care: a Meta-integration [J]. Journal of Nursing, 2024, 31(5): 50-55.
[3] OU Yang-li, SHEN Jun, LI Miao, PENG Ying, LIAO Xiao-yan, ZHANG Hong, CHEN Li-yu. Best evidence summary for influencing factors of proactive health in disabled elderly people [J]. Journal of Nursing, 2024, 31(1): 58-63.
[4] SUN Xiao-wei, WANG Yan, MIN Chun-yan, DUAN Fei, XIAO Jiang-qin. Status quo and influencing factors of life space in elderly patients with chronic obstructive pulmonary disease:a 322-case study [J]. Journal of Nursing, 2023, 30(8): 1-6.
[5] CHEN Tong, BI Yu-qing, CHEN Qian, XUE Zi-chen, HUANG Jing-wen, LUO Sheng, LI Wei. Construction of evaluation index system of chronic disease nursing competency for elderly people in communities [J]. Journal of Nursing, 2023, 30(7): 1-4.
[6] REN Ying, YU Wei-hua, ZHANG Li, ZHENG Jun-jun, DENG Man, YANG Xia, ZHANG Yu-xi. Current status of life space level of community elderly people and its influencing factors [J]. Journal of Nursing, 2023, 30(7): 11-15.
[7] XU Yan-hong, Wei Qing-feng, XIA Ye, ZHONG Yan. Construction of hospital-community management index system of patients with colorectal polyps after endoscopic resection based on screening platform [J]. Journal of Nursing, 2023, 30(5): 33-37.
[8] REN Pan, CHEN Xiao-ju, ZENG Jing, LIAO Ming-shu, RONG Huan, ZHONG Hong-yue, LI Li. Construction of home-care service standard of social support institutions for elderly people with dementia in Chengdu City from perspective of long-term care insurance [J]. Journal of Nursing, 2023, 30(4): 11-15.
[9] GAO Yun-yun, LIU Fang, LIU Wei-wei. Competency characteristics of public health nurses: a qualitative study [J]. Journal of Nursing, 2023, 30(4): 23-28.
[10] REN Ying, YU Wei-hua, ZHANG Li. Current status of reversible cognitive frailty of elderly people in medical-nursing combined care institutions and its influencing factors [J]. Journal of Nursing, 2023, 30(23): 6-11.
[11] CAO Xiao-xia, YANG Zhi-lan, CUI Li-ping, GENG Hui, JU Wei-fang. Current status and influencing factors of mild cognitive impairment in 1 064 elderly people in rural areas of Shanxi [J]. Journal of Nursing, 2023, 30(22): 7-12.
[12] ZHOU Qiao, WU Jun-qi, ZHANG Cui-e, YOU Jun, XU Xiang-hua. Construction and application of group-based acceptance and commitment therapy for elderly stroke survivors [J]. Journal of Nursing, 2023, 30(19): 7-12.
[13] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[14] LI Na, HUANG Yi-xin, LIU Mei-lan, DENG Yin-hui, ZOU Xiao-fang. Translation of Health-promoting Behavior of Elderly People Scale and its reliability and validity [J]. Journal of Nursing, 2023, 30(17): 5-10.
[15] WANG Ruo-xian, HE Bin, Wang Yu-huan, LIU Ke-ru, TANG Xue-ting, ZHAO Shu-hua, WEI Shan-shan. Current status and influencing factors of osteoporotic fracture risk perception bias in community elderly people [J]. Journal of Nursing, 2023, 30(15): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
[1] . [J]. Journal of Nursing, 2024, 31(16): 50 -55 .
[2] . [J]. Journal of Nursing, 2024, 31(18): 12 -15 .
[3] HU Xing-juan, ZHANG Lun, GAO Yu-lin, GAO Chun-feng, CHEN Miao-yan, LI Xiao-jun, CHEN Xi-lin, HONG Du-yun, LIANG Ye-ji. Effect of generative artificial intelligence assisted blended teaching in teaching of infection prevention with intradermal needle for intern nursing students[J]. Journal of Nursing, 2024, 31(18): 21 -25 .
[4] . [J]. Journal of Nursing, 2024, 31(18): 26 -29 .
[5] . [J]. Journal of Nursing, 2024, 31(18): 30 -34 .
[6] SHI Chen, YAN Ze-lin, MA Jia-jun, LI Xin-xu, OU Chun-quan. Missing data in patient-reported outcomes in clinical studies and its solutions[J]. Journal of Nursing, 2024, 31(18): 35 -38 .
[7] CAO Chun-ju, WANG Wen, HUANG Mei-ying, HAN Bing, ZENG Mei, LUO Wen-jie, ZHANG Xiao-qin, HUANG Wei-ling, LI Wen-ying, SU Yun-tao, TANG Su-juan. Best evidence summary for management of pruritus in patients with cholestasis[J]. Journal of Nursing, 2024, 31(18): 39 -44 .
[8] YAO Yao, ZHANG Min, CHEN Yan, WANG Chun. Implementation difficulties of “Internet +” disability care service from perspective of user experience[J]. Journal of Nursing, 2024, 31(19): 1 -7 .
[9] LU Zhen-tao, SHI Fu-xia, WANG Yu-hui, GUO Jing. Clinical application rules of auricular point sticking for cancer-induced fatigue based on data mining[J]. Journal of Nursing, 2024, 31(19): 8 -11 .
[10] GUO Sai-nan, JIANG Hui-ping, WANG Zi-hao, LIANG Qiu-man, SHI Ting-qi. Postpartum health information need of nulliparous women based on latent Dirichlet allocation[J]. Journal of Nursing, 2024, 31(19): 19 -23 .