以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (19): 19-23.doi: 10.16460/j.issn1008-9969.2024.19.019

Previous Articles     Next Articles

Postpartum health information need of nulliparous women based on latent Dirichlet allocation

GUO Sai-nan1, JIANG Hui-ping1, WANG Zi-hao2, LIANG Qiu-man2, SHI Ting-qi1   

  1. 1. Dept. of Nursing Administration, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China;
    2. School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210008, China
  • Received:2024-05-10 Online:2024-10-10 Published:2024-11-07

Abstract: Objective To explore health care information demand for postpartum women and infants on real-time social platforms using the latent Dirichlet allocation (LDA). Methods The text data in the WeChat group for postpartum continuous nursing were extracted from January to June 2023, and the demand topics contained in the text data were analyzed through data cleaning, word segmentation and LDA. Results The 23 531 text data extracted by LDA were summarized into 8 topics: infant health status, infant feeding status, infant daily care, growth and development, maternal and infant health examination, vaccination, postpartum recovery, social support, and peer experience sharing. Conclusion Information need analysis based on natural language is effective for obtaining objective and comprehensive health information needs for postpartum maternal and infant, and provide reference for medical institutions to provide comprehensive and refined postpartum health guidance.

Key words: nulliparous women, postnatal, maternal and child health information needs, continuous nursing, latent Dirichlet allocation

CLC Number: 

  • R473.71
[1] Peterson-Besse JJ, Knoll JE, Horner-Johnson W.Internet networks as a source of social support for women with mobility disabilities during pregnancy[J].Disabil Health J,2019,12(4):722-726.DOI:10.1016/j.dhjo.2019.04.003.
[2] 崔嫦婷,刘珍,黄晓燕.基于微信平台的延续性护理对产妇产后恢复情况、睡眠质量及母乳喂养行为的影响[J].护理实践与研究,2018, 15(14):70-72.DOI:10.3969/j.issn.1672-9676.2018.14.028.
[3] 章娟,张志力,王倩,等.孕产妇母婴健康信息辨别能力及其影响因素研究[J].中国全科医学,2021,24(24):3065-3070.DOI:10.12114/j.issn.1007-9572.2021.00.592.
[4] 谭玉玲,黄美玲,邬敏志,等.“互联网+母婴护理”精准服务模式的构建与实践[J].护理学报,2021,28(23):25-27.DOI:10.16460/j.issn1008-9969.2021.23.025.
[5] 田策,姜岳,杨芳,等.产妇产褥期健康管理期望与感知的现状分析[J].中华护理杂志,2020,55(12):1796-1801.DOI:10.3761/j.issn.0254-1769.2020.12.007.
[6] Hagg LJ, Merkouris SS, O'Dea GA,et al.Examining analytic practices in latent dirichlet allocation within psychological science: scoping review[J]. J Med Internet Res,2022,24(11):e33166. DOI: 10.2196/33166.
[7] 周国韬,龚栩,邓胜利.基于主题分析的用户养生健康信息需求演化趋势研究[J].情报科学,2022,40(4):118-126;137.DOI:10.13833/j.issn.1007-7634.2022.04.015.
[8] 赵洁,贾君枝,司莉.基于社会化问答的用户健康信息需求概念体系构建——以糖尿病为例[J].情报理论与实践,2023,46(7):150-157.DOI:10.16353/j.cnki.1000-7490.2023.07.018.
[9] 马誉萁,侯小妮,段红梅,等.基于LDA主题模型的网络问答社区妊娠合并糖尿病孕产妇健康信息需求分析[J].护理学杂志,2023, 38(7):86-89;124. DOI:10.3870/j.issn.1001-4152.2023.07.086.
[10] Github.Stopwords[S/OL].(2018-11-01)[2022-09-30]. https://github.com/goto456/stopwords.
[11] 徐红,张斯婷,李凌方.基于LDA模型与共词分析法的农村阅读推广主题发现与热点分析[J].情报科学,2022,40(10):67-73.DOI:10.13833/j.issn.1007-7634.2022.10.009.
[12] 薛芯菊. 基于Python的K-means算法及其应用[J].科技视界, 2018(24):141-142. DOI:10.19694/j.cnki.issn2095-2457.2018.24.067.
[13] Kamali S, Ahmadian L, Khajouei R,et al.Health information needs of pregnant women: infor mation sources, motives and barriers[J]. Health Info Libr J,2018,35(1):24-37. DOI: 10.1111/hir.12200.
[14] 沐婷玉,李玉红,吴丹,等.不同阶段孕产妇健康教育需求的质性研究[J].解放军护理杂志,2018,35(14):15-18.DOI:10.3969/j.issn.1008-9993.2018.14.004.
[15] 程晓芸,张志力,裴素云,等.基于目标群体指数和对应分析的孕产妇母婴保健信息需要研究[J].中国全科医学, 2020,23(10):1305-1310.DOI:10.12114/j.issn.1007-9572.2019.00.786.
[16] Slomian J, Bruyère O, Reginster JY, et al.The internet as a source of information used by women after childbirth to meet their need for information: a web-based survey[J]. Midwifery,2017,48:46-52.DOI:10.1016/j.midw.2017.03.005.
[17] Van der Werf ET, Redmond NM, Turnbull S, et al. Parental and clinician agreement of illness severity in children with RTIs: secondary analysis of data from a prospective cohort study[J]. Br J Gen Pract,2019,69(681):e236-e245. DOI: 10.3399/bjgp19X701837.
[18] Dorst MT, Anders SH, Chennupati S,et al.Health information technologies in the support systems of pregnant women and their caregivers: mixed-methods study[J]. J Med Internet Res,2019,21(5):e10865. DOI: 10.2196/10865.
[19] 李星颖,陈维怡,金龙妹,等.新冠疫情下从官方新媒体途径获取孕产保健信息与防护知识行为的横断面调查[J].复旦学报(医学版),2021,48(4):520-526.DOI:10.3969/j.issn.1672-8467.2021.04.015.
[20] Mousavi SL, Saki M, Mohammadipour F,et al.Experiences of cancer patients about seeking health information: a qualitative study[J]. Support Care Cancer, 2022,30(9):7697-7704.DOI:10.1007/s00520-022-07210-3.
[21] 郑春华,李红雨,陈晓霞,等.延续性护理对产妇管理的效果评价[J].陆军军医大学学报,2022,44(20):2082-2087.DOI:10.16016/j.2097-0927.202203266.
[22] Caddy C, Cheong M, Lim MSC,et al."Tell us what's going on": exploring the information needs of pregnant and post-partum women in Australia during the pandemic with ‘Tweets', ‘Threads', and women's views[J]. PLoS One,2023,18(1):e0279990.DOI:10.1371/journal.pone.0279990.
[1] HUANG Yuan-Yuan, FU Qiao-Mei, LIU Guang-Xiang, BAI Ya-Xin, ZHANG Qing. Effect of “Internet plus”Extended Nursing on Patients with Renal Transplantation [J]. Journal of Nursing, 2020, 27(8): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
[1] . [J]. Journal of Nursing, 2024, 31(16): 50 -55 .
[2] . [J]. Journal of Nursing, 2024, 31(18): 12 -15 .
[3] HU Xing-juan, ZHANG Lun, GAO Yu-lin, GAO Chun-feng, CHEN Miao-yan, LI Xiao-jun, CHEN Xi-lin, HONG Du-yun, LIANG Ye-ji. Effect of generative artificial intelligence assisted blended teaching in teaching of infection prevention with intradermal needle for intern nursing students[J]. Journal of Nursing, 2024, 31(18): 21 -25 .
[4] . [J]. Journal of Nursing, 2024, 31(18): 26 -29 .
[5] . [J]. Journal of Nursing, 2024, 31(18): 30 -34 .
[6] SHI Chen, YAN Ze-lin, MA Jia-jun, LI Xin-xu, OU Chun-quan. Missing data in patient-reported outcomes in clinical studies and its solutions[J]. Journal of Nursing, 2024, 31(18): 35 -38 .
[7] CAO Chun-ju, WANG Wen, HUANG Mei-ying, HAN Bing, ZENG Mei, LUO Wen-jie, ZHANG Xiao-qin, HUANG Wei-ling, LI Wen-ying, SU Yun-tao, TANG Su-juan. Best evidence summary for management of pruritus in patients with cholestasis[J]. Journal of Nursing, 2024, 31(18): 39 -44 .
[8] YAO Yao, ZHANG Min, CHEN Yan, WANG Chun. Implementation difficulties of “Internet +” disability care service from perspective of user experience[J]. Journal of Nursing, 2024, 31(19): 1 -7 .
[9] LU Zhen-tao, SHI Fu-xia, WANG Yu-hui, GUO Jing. Clinical application rules of auricular point sticking for cancer-induced fatigue based on data mining[J]. Journal of Nursing, 2024, 31(19): 8 -11 .
[10] HAO Yang, QIN Yan-mei, MAO Mei-qi, ZHAO Ya-ning, LIU Yao, HAN Ying. Influencing factors of cognitive frailty in community-dwelling elderly individuals based on Bayesian network model[J]. Journal of Nursing, 2024, 31(19): 12 -18 .