以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (19): 12-18.doi: 10.16460/j.issn1008-9969.2024.19.012

• 研究生园地 • 上一篇    下一篇

基于贝叶斯网络模型的社区老年人认知衰弱的影响因素分析

郝杨, 秦艳梅, 毛美琦, 赵雅宁, 刘瑶, 韩影   

  1. 华北理工大学 护理与康复学院,河北 唐山 063200
  • 收稿日期:2024-01-05 出版日期:2024-10-10 发布日期:2024-11-07
  • 通讯作者: 赵雅宁(1974-),女,河北唐山人,博士,教授。E-mail:993241832@qq.com
  • 作者简介:郝杨(1998-),女,河北秦皇岛人,本科学历,硕士研究生在读,护士。

Influencing factors of cognitive frailty in community-dwelling elderly individuals based on Bayesian network model

HAO Yang, QIN Yan-mei, MAO Mei-qi, ZHAO Ya-ning, LIU Yao, HAN Ying   

  1. School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063200, China
  • Received:2024-01-05 Online:2024-10-10 Published:2024-11-07

摘要: 目的 分析社区老年人认知衰弱的影响因素及其中的网络关系,为更有效降低认知衰弱的发生提供科学依据。方法 采用便利抽样法,2022年8月—2023年6月选取唐山市8个社区1 449名老年人为研究对象,采用一般资料调查问卷、衰弱量表、简易精神状态检查量表、微型营养评价精法、流调中心抑郁水平评定量表、社区老年人数字健康素养评估量表对其进行调查,分析认知衰弱的影响因素及构建贝叶斯网络模型。结果 以年龄、性别、婚姻状况、居住状况、受教育程度、个人平均月收入为协变量进行匹配共439对调查对象匹配成功。倾向性评分匹配后的二元logistic回归分析模型分析结果显示,有慢性病情况(OR=4.500)、睡眠时长不良(OR=2.398)、营养不良(OR=1.440)、无体育锻炼(OR=2.398)、抑郁(OR=4.586)、数字健康素养低水平(OR=1.574)是认知衰弱的危险因素(均P<0.05)。倾向性评分匹配后贝叶斯网络模型显示慢性病情况、睡眠时长、营养状况、体育锻炼、抑郁与认知衰弱直接相关。慢性病情况通过睡眠、营养状况、数字健康素养与认知衰弱间接相关,数字健康素养通过睡眠时长、营养状况与认知衰弱间接相关,体育锻炼通过抑郁与认知衰弱间接相关。研究对象营养良好、睡眠时长不良、有慢性病、进行体育锻炼、不存在抑郁时,其患认知衰弱的风险为0.460。结论 贝叶斯网络模型揭示了社区老年人认知衰弱发生的直接和间接因素以及关联强度,阐明了因素间的复杂网络关系,为社区卫生服务人员更有效降低认知衰弱的发生和提出针对性的干预措施提供科学依据。

关键词: 老年人, 社区, 认知衰弱, 倾向性评分匹配, 贝叶斯网络模型

Abstract: Objective To analyze the influencing factors of cognitive frailty in community-dwelling elderly individuals and their network relationships, and to provide scientific basis for reducing the occurrence of cognitive frailty more effectively. Methods Convenience sampling was used to select 1 449 elderly people from 8 communities in Tangshan City from August 2022 to June 2023, and they were investigated by using the General Information Questionnaire, FRAIL Scale, Mini-Mental State Examination, Short-Form Mini-Nutritional Assessment, Center for Epidemiologic Studies Depression Scale, and the Digital Health Literacy Assessment Scale for the Community-dwelling Elderly. The influencing factors of cognitive frailty were analyzed and a Bayesian network model was built. Results A total of 439 pairs of respondents were successfully matched with age, sex, marital status, residence status, education background and average monthly income as covariates. Binary logistic regression analysis model after matching propensity scores showed that chronic disease (OR=4.500), poor sleep duration (OR=2.398), malnutrition (OR=1.440), no physical exercise (OR=2.398), depression (OR=4.586), and low digital health literacy (OR=1.574) were risk factors for cognitive frailty (all P<0.05). Bayesian network model after propensity score matching showed that chronic disease, sleep duration, nutrition status, physical exercise, and depression were directly related to cognitive frailty. Chronic disease was indirectly related to cognitive frailty through sleep, nutritional status and digital health literacy; digital health literacy was indirectly related to cognitive frailty through sleep duration and nutritional status; physical exercise was indirectly related to cognitive frailty through depression. When participants were well-nourished, with poor sleep duration, with chronic disease(s), physically active, and without depression, the risk of cognitive frailty was 0.460. Conclusion Bayesian network model reveals the direct and indirect factors and correlation strength of cognitive frailty among the elderly in the community, clarifies the complex network relationship between the factors, and provides scientific basis for community health service personnel to reduce the incidence of cognitive frailty more effectively and propose targeted intervention measures.

Key words: elderly people, community, cognitive frailty, propensity score matching, Bayesian network model

中图分类号: 

  • R473.2
[1] 赵瑞雪,马雅军,刘惠,等.认知衰弱诊治的研究进展[J].基础医学与临床, 2021, 41(6):895-898. DOI:10.16352/j.issn.1001-6325.2021.06.022.
[2] 周闯,金学勤,郭正丽,等.不同机器学习算法的社区老年人认知衰弱风险预测模型比较[J].护理学杂志,2023,38(19):1-5. DOI:10.3870/j.issn.1001-4152.2023.19.001.
[3] 陈颖勇,张正敏,左倩倩,等.广州市某社区老年人可逆性认知衰弱现状及影响因素[J].解放军护理杂志, 2022,39(6):13-16. DOI:10.3969/j.issn.1008-9993.2022.06.004.
[4] 刘玥婷,范俊瑶,赵慧敏,等.老年人认知衰弱对不良健康结局影响的研究进展[J].护理研究,2020,34(18):3277-3282. DOI:10.12102/j.issn.1009-6493.2020.18.016.
[5] Baoyu C, Mingting W, Qin H, et al.Impact of frailty, mild cognitive impairment and cognitive frailty on adverse health outcomes among community-dwelling older adults: a systematic review and Meta-analysis[J]. Front Med (Lausanne),2022,31(9):1009794. DOI:10.3389/fmed.2022.1009794.
[6] 林丽玉,许丽春,张鑫,等.老年认知衰弱的危险因素Meta分析[J].现代预防医学,2022,49(9):1653-1658.
[7] Topuz K, Davazdahemami B, Delen D.A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases[J]. Ann Oper Res,2023,17:1-25. DOI:10.1007/s10479-023-05377-4.
[8] Navarro-Pardo E, Facal D, Campos-Magdaleno M, et al.Prevalence of cognitive frailty, do psychosocial-related factors matter?[J]. Brain sciences, 2020, 10(12):968. DOI:10.3390/brainsci10120968.
[9] 廉鹏飞,刘璋,曾燕,等.社区老年人体智锻炼与轻度认知障碍患病关联性的城乡差异[J].中华疾病控制杂志,2023,27(10):1128-1132.DOI:10.16462/j.cnki.zhjbkz.2023.10.003.
[10] 常文龄,李佳欣,倪卫桂,等.不良睡眠时长与中老年人记忆力及认知功能的关系[J].现代预防医学, 2023, 50(14):2613-2619. DOI:10.20043/j.cnki.MPM.202210638.
[11] Rubenstein LZ, Harker JO, Salvà A, et al.Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF)[J]. Gerontol A Biol Sci Med Sci,2001,56(6):366-372.DOI:10.1093/gerona/56.6.m366.
[12] 张欢欢,王翠平,赵敏,等.利用微型营养评价法和微型营养评价精法评价社区老年人的营养状况[J].山东大学学报(医学版),2017, 55(11):65-70. DOI:10.6040/j.Issn.1671-7554.0.2017.107.
[13] Andresen EM, Malmgren JA, Carter WB, et al.Screening for depression in well older adults: evaluation of a short form of the CES-D(Center for Epidemiologic Studies Depression Scale)[J]. Am J Prev Med,1994,10(2):77-84.
[14] 黄庆波,王晓华,陈功.10项流调中心抑郁自评量表在中国中老人群中的信效度[J].中国健康心理学杂志,2015,23(7):1036-1041. DOI:10.13342/j.cnki.cjhp.2015.07.023.
[15] 刘思奇,付晶晶,孔德辉,等.社区老年人数字健康素养评估量表的编制及信效度检验[J].护理研究, 2021, 35(23):4169-4174. DOI:10.12102/j.issn.1009-6493.2021.23.006.
[16] MacCallum RC, Zhang S, Preacher KJ, et al. On the practice of dichotomization of quantitative variables[J]. Psychol Methods,2002,7(1):19-40. DOI:10.1037/1082-989x.7.1.19.
[17] Morley JE, Malmstrom TK, Miller DK.A simple frailty questionnaire(FRAIL) predicts outcomes in middle aged African Americans[J]. Nutr Health Aging,2012,16:601-608. DOI:10.1007/s12603-012-0084-2.
[18] 卫尹,曹艳佩,杨晓莉,等.老年住院患者衰弱综合征现状及影响因素[J].复旦学报(医学版),2018,45(4):496-502. DOI:10.3969/j.issn.1672-8467.2017.04.010.
[19] Folstein MF, Folstein SE, McHugh PR."Mini-mental state". A practical method for grading the cognitive state of patients for the clinician[J]. Psychiatr Res,1975,12(3):189-198. DOI:10.1016/0022-3956(75)90026-6.
[20] 李格,沈漁邨,陈昌惠,等.老年痴呆简易测试方法研究——MMSE在城市老年居民中的测试[J].中国心理卫生杂志,1988(1):13-18.
[21] 常文龄,李佳欣,倪卫桂,等.不良睡眠时长与中老年人记忆力及认知功能的关系[J].现代预防医学, 2023, 50(14):2613-2619. DOI:10.20043/j.cnki.MPM.202210638.
[22] Kelaiditi E, Cesari M, Canevelli M, et al.Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group[J]. J Nutr Health Aging,2013,17(9):726-734. DOI:10.1007/s12603-013-0367-2.
[23] 卢珍珍,赵恩慧,黄丽红.PS与DRS匹配对已测量混杂因素的控制效果评价[J].中华疾病控制杂志, 2024,28(2):241-248. DOI:10.16462/j.cnki.zhjbkz.2024.02.018.
[24] 陈颖勇,张正敏,左倩倩,等.社区老年人认知衰弱风险预测模型的构建及验证[J].中华护理杂志, 2022, 57(2):197-203. DOI:10.3761/j.issn.0254-1769.2022.02.012.
[25] 姚晶,刘伟,李娜,等.我国老年人认知衰弱影响因素及健康指导研究进展[J].中国健康教育,2023, 39(8):715-719. DOI:10.16168/j.cnki.issn.1002-9982.2023.08.008.
[26] 任影,于卫华,张利.医养结合型养老机构老年人可逆性认知衰弱现状及影响因素分析[J].护理学报,2023,30(23):6-11. DOI:10.16460/j.issn1008-9969.2023.23.006.
[27] Minchao Li, Nan Wang, Matthew E Dupre.Association between the self-reported duration and quality of sleep and cognitive function among middle-aged and older adults in China[J]. J Affect Disorders, 2022,304:20-27. DOI:10.1016/j.jad.2022.02.039.
[28] 李惊鸿,黄欢欢,谢颖,等.369例重庆社区高血压老年患者衰弱与营养不良共病现状及影响因素分析[J].护理学报,2021,28(22):70-74. DOI:10.16460/j.issn1008-9969.2021.22.070.
[29] 周飞洋,邓露,龙柯宇,等.老年人认知衰弱风险预测模型的系统评价[J].护理学报,2023,30(19):45-50. DOI:10.16460/j.issn1008-9969.2023.19.045.
[30] Panza F, Lozupone M, Solfrizzi V, et al.Different cognitive frailty models and health- and cognitive-related outcomes in older age:from epidemiology to prevention[J]. Alzheimers Dis,2018,62(3):993-1012. DOI:10.3233/JAD-170963.
[31] Wu KY, Lin KJ, Chen CH, et al.Diversity of neurodegenerative pathophysiology in nondemented patients with major depressive disorder: evidence of cerebral amyloidosis and hippocampal atrophy[J]. Brain Behav,2018,8(7):e01016. DOI:10.1002/brb3.1016. Epub 2018 Jun 21.
[32] Angulo J, El Assar M, álvarez-Bustos A, et al.Physical activity and exercise: Strategies to manage frailty[J]. Redox Biol,2020,35:101513. DOI:10.1016/j.redox.2020.101513.
[33] Taveira A, Sousa B, Costa P, et al.Health management of malnourished elderly in primary health care: a scoping review[J]. BMC Prim Care, 2022, 23(1):272. DOI:10.1186/s12875-022-01883-9.
[34] Huang SH, Chen SC, Geng JH, et al.Metabolic syndrome and high-obesity-related indices are associated with poor cognitive function in a large Taiwanese population study older than 60 years[J]. Nutrients,2022,14(8):1535. DOI:10.3390/nu14081535.
[35] Moon JH, Huh JS, Won CW, et al.Is polypharmacy associated with cognitive frailty in the elderly? Results from the Korean frailty and aging cohort study[J]. J Nutr Health Aging, 2019,23(10):958-965. DOI:10.1007/s12603-019-1274-y.
[36] 孙明楠,孙晓峰,王海涛,等.老年糖尿病病人衰弱现状及影响因素[J].护理研究,2024,38(2):280-286. DOI:10.12102/j.issn.1009-6493.2024.02.014.
[37] 张佳弛,肖淑娟,薛雅卿,等.慢性病对老年人生命质量影响:睡眠质量的中介作用和社会参与调节作用[J].中国预防医学杂志, 2023,24(11):1145-1150.DOI:10.16506/j.1009-6639.2023.11.002.
[38] 汤红梅,许慧琳,郭琪,等.上海市闵行社区老年人营养不良风险评估及其影响因素[J].环境与职业医学,2023,40(9):1068-1073. DOI:10.11836/JEOM22504.
[1] 丁心舒, 孙乐菲, 高伟, 鲁琦, 闫畅, 刘德山. 矛盾年龄歧视量表在社区老年人中的信效度检验[J]. 护理学报, 2024, 31(7): 12-16.
[2] 王薇, 周演铃, 薛文萍, 张淋淋, 林书球. 老年髋部骨折患者衰弱评估工具的范围综述[J]. 护理学报, 2024, 31(4): 42-47.
[3] 李明哲, 田一川, 王成龙, 王晶晶. 社会网络在智能手机使用与老年人孤独感的因果中介作用[J]. 护理学报, 2024, 31(20): 45-49.
[4] 王之仪, 颜立春, 胡雅静, 易小聪, 谭素文, 张银华. 养老机构老年人身体约束护理方案的构建与检验[J]. 护理学报, 2024, 31(20): 55-59.
[5] 杨侠, 于卫华, 张雨溪, 邓曼, 任影, 张利, 张海燕. 377例社区老年多重慢病患者心理困扰现状及影响因素分析[J]. 护理学报, 2024, 31(18): 50-55.
[6] 康俊贤, 崔玉, 张小丽, 邢凤梅, 汪凤兰. 共病老年人及其配偶内在力量、赋权水平与生存质量的关系研究[J]. 护理学报, 2024, 31(17): 8-12.
[7] 吴双赢, 谢子恒, 庄严. 2 888名老年人抑郁症状发展轨迹及影响因素研究[J]. 护理学报, 2024, 31(14): 6-12.
[8] . 老年人社会参与能力的潜在剖面分析及其对衰弱的影响[J]. 护理学报, 2024, 31(12): 1-6.
[9] . 老年人咀嚼功能临床研究现状[J]. 护理学报, 2024, 31(12): 21-25.
[10] . 社区安宁疗护护士准入标准与服务能力评价体系的构建研究[J]. 护理学报, 2024, 31(12): 73-78.
[11] 邬馨益, 徐林燕, 陈卓琦, 朱徐乐, 赵磊. 老年人运动认知功能减退综合征风险预测模型的构建与验证[J]. 护理学报, 2024, 31(10): 73-78.
[12] 詹娜妮, 王雅琪, 唐丽, 卜凡, 吕启圆. 5 280名老年人主观记忆障碍现状及影响因素研究[J]. 护理学报, 2024, 31(1): 22-26.
[13] 周祎敏, 姚宇哲, 叶旭春. 社区老年人对照护机器人感知与期望的Meta整合[J]. 护理学报, 2023, 30(9): 43-48.
[14] 孙小卫, 王燕, 闵春燕, 段菲, 肖江琴. 322例老年COPD患者生活空间现状及影响因素分析[J]. 护理学报, 2023, 30(8): 1-6.
[15] 陈彤, 秘玉清, 陈倩, 薛梓晨, 黄静雯, 罗盛, 李伟. 老年社区慢性病护理服务能力评价指标体系构建研究[J]. 护理学报, 2023, 30(7): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
[1] 梁慧, 王建宁, 张艺, 胡娇娇, 龚翠颖, 李立群. 卧床患者压力性损伤管理指南的质量评价及内容分析[J]. 护理学报, 2024, 31(16): 50 -55 .
[2] 简称苹, 张汉卿, 王丽英, 田海艳, 彭向东, 张亚楠, 蔡德芳. 本科护生自我调节学习策略量表的汉化及信效度检验[J]. 护理学报, 2024, 31(18): 12 -15 .
[3] 胡杏娟, 张伦, 高钰琳, 高春凤, 陈妙燕, 李晓君, 陈烯琳, 洪笃云, 梁业基. 生成式人工智能辅助混合式教学在实习护生皮内针技术感染预防教学中的应用[J]. 护理学报, 2024, 31(18): 21 -25 .
[4] 万丞, 万盈璐, 陈倩, 陈双妍. 基于K-mains聚类法的护理人员改良排班方法研究[J]. 护理学报, 2024, 31(18): 26 -29 .
[5] 武洁, 张培莉, 侯晓雅, 高超越, 刘雨溦, 张玉颖. 同伴支持在肿瘤患者营养管理中的研究进展[J]. 护理学报, 2024, 31(18): 30 -34 .
[6] 史晨, 闫泽霖, 马嘉骏, 李新旭, 欧春泉. 临床研究中基于患者报告结局的缺失值问题及对策[J]. 护理学报, 2024, 31(18): 35 -38 .
[7] 曹春菊, 王文, 黄梅英, 韩冰, 曾梅, 罗文洁, 张小琴, 黄炜铃, 李文英, 苏韵涛, 唐素娟. 胆汁淤积患者皮肤瘙痒管理的最佳证据总结[J]. 护理学报, 2024, 31(18): 39 -44 .
[8] 姚瑶, 张敏, 陈雁, 王春. 用户体验视角下“互联网+”失能照护服务实施困境研究[J]. 护理学报, 2024, 31(19): 1 -7 .
[9] 陆镇涛, 石福霞, 王玉慧, 郭敬. 基于数据挖掘的耳穴贴压干预癌因性疲乏的临床应用规律[J]. 护理学报, 2024, 31(19): 8 -11 .
[10] 郭赛男, 蒋慧萍, 王子豪, 梁秋曼, 史婷奇. 基于潜在狄利克雷分布主题模型的初产妇产后健康信息需求研究[J]. 护理学报, 2024, 31(19): 19 -23 .