以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (7): 48-52.doi: 10.16460/j.issn1008-9969.2023.07.048

Previous Articles     Next Articles

Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review

YE Lei1a, ZHANG Ai-qin2, RONG Yun1a, XIA Guang-hui1b   

  1. 1a. Dept. of Critical Care Medicine; 1b. Dept. of Nursing Administration, Brain Hospital Affiliated to Nanjing Medical University, Nangjing 210029, China;
    2. Dept. of Burn and Plastic Surgery, General Hospital of Eastern Theater Command, Nanjing 210002, China
  • Received:2022-10-28 Published:2023-05-12

Abstract: Objective To systematically evaluate the risk prediction model for postoperative delirium in elderly patients with hip fracture. Methods We searched the databases of PubMed, Embase, Web of Science, The Cochrane Library, China knowledge Network, Wanfang and VIP from the inception to May 2022 for eligible literature. Two researchers independently extracted the data and PROBAST was used for quality evaluation. Results Eleven studies were included and the area under the ROC curve was 0.67~0.94. The most common predisposing factors of postoperative delirium were age, ASA grading and decreased cognitive reserve, and the promoting factors were waiting time for operation and hypoproteinemia before operation. The prediction performance of 11 models was good, but there was certain bias, mainly ignoring the missing data processing. Most of the predictive factor screening was not combined with clinical professional knowledge, lacking external verification. There were differences in the evaluation tools and time of postoperative delirium in some studies. Conclusion Good prediction performance, low risk of applicability and high risk of bias of the existing models are found. It is still necessary to improve the statistical analysis details such as variable screening, missing data processing, and model performance evaluation, and carry out prospective studies to conduct research on existing models.

Key words: hip fracture, postoperative delirium, risk prediction model, systematic review

CLC Number: 

  • R473.6
[1] 刘杨,罗健,朱佩佩,等. 髋部手术患者术后康复指南的质量评价及内容分析[J]. 护理学报,2021,28(12):56-61.DOI:10.16460/j.issn1008-9969.2021.12.056.
[2] 王天沛,蔡永松,郭华,等.老年髋部骨折患者个体化术后谵妄风险预测模型的构建及验证[J]. 陆军军医大学学报,2022,44(6):563-570.2015.02.002. DOI:10.16016/j.2097-0927.202110045.
[3] 孟恬宇,尹战海,李萌,等.老年髋部骨折术后谵妄的管理[J]. 中华老年多器官疾病杂志,2021,20(9):716-720.DOI:10.11915/J.issn.1671-5403.2021.09.150.
[4] Marcantonio ER.Delirium in hospitalized older adults[J]. N Engl J Med, 2017, 377(15):1456-1466. DOI:10.1056/NEJMcp1605501.
[5] 董碧蓉,岳冀蓉. 老年患者术后谵妄防治中国专家共识[J]. 中华老年医学杂志, 2016, 35(12):1257-1262.DOI:10.3760/cma.J.issn.0254-9026.2016.12.001.
[6] Wang Y, Zhao L, Zhang C,et al.Identification of risk factors for postoperative delirium in elderly patients with hip fractures by a risk stratification index model: a retrospective study[J]. Brain Behav, 2021, 11(12):e32420.DOI:10.1002/brb3.2420.
[7] 陈香萍, 张奕, 庄一渝, 等. PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志,2020,20(6):737-744.DOI:10.7057/1672-2351.201910087.
[8] Oberai T, Oosterhoff JHF, Woodman R, et al.Development of a dostoperative delirium risk scoring tool using data from the Australian and New Zealand hip fracture registry: an analysis of 6672 patients 2017-2018[J]. Arch Gerontol Geriatr,2021,94:104368.DOI:10.1016/j.archger.2021.104368.
[9] Kim EM, Li G, Kim M.Development of a risk score to predict postoperative delirium in patients with hip fracture[J]. Anesth Analg,2020,130(1):79-86.DOI:10.1213/ANE.0000000000004386.
[10] Uzoigwe CE, O'Leary L, Nduka J, et al. Factors associated with delirium and cognitive decline following hip fracture surgery[J]. Bone Joint J,2020,102-B(12):1675-1681. DOI:10.1302/0301-620X.102B12.BJJ-2019-1537.R3.
[11] Zhang X, Tong DK, Ji F, et al.Predictive nomogram for postoperative delirium in elderly patients with a hip fracture[J]. Injury,2019,50(2):392-397. DOI:10.1016/j.injury.2018.10.034.
[12] Zhao H, You J, Peng Y, et al. Machine learning algorithm using electronic chart-derived data to predict delirium after elderly hip fracture surgeries: a retrospective case-control study[J]. Front Surg, 2021, 13;8:634629. DOI:10.3389/fsurg.2021.634629.
[13] 胡玲,胡三莲,钱会娟. 老年髋部骨折患者术后谵妄发生现况及危险因素分析[J].中国护理管理,2019,19(2):204-210.DOI:10.3969/j.issn.1672-1756.2019.02.010.
[14] 张明媚,朱星波,黄立新. 老年髋部骨折患者术后谵妄的预测模型构建及初步应用[J]. 天津医药,2021,49(6):641-645.DOI:10.11958/20201943.
[15] 熊春红,熊淑明,王小云,等. 结合术前营养评估结果的老年髋部骨折术后谵妄Nomogram模型构建[J]. 护理研究,2020,34(14):2457-2462.DOI:10.12102/j.issn.1009-6493.2020.14.005.
[16] 苏保童,王翰宇,许忆浪,等. 基于医院病历资料构建老年髋部骨折术后谵妄Nomogram预测模型[J]. 中国组织工程研究,2021,25(24):3844-3849. DOI:2095-4344(2021)24-03844-06.
[17] 王树相,陈鑫磊,徐超. 个体化预测老年髋部骨折患者术后谵妄风险[J]. 中国矫形外科杂志,2019,27(6):542-548.DOI:1005-8478(2019)06-0542-07.
[18] Bai J, Liang Y, Zhang P, et al.Association between postoperative delirium and mortality in elderly patients undergoing hip fractures surgery: a Meta-analysis[J]. Osteoporos Int, 2020,31(2):317-326.DOI:10.1007/s00198-019-05172-7.
[19] Hölttä EH, Laurila JV, Laakkonen ML, et al.Precipitating factors of delirium: stress response to multiple triggers among patients with and without dementia[J]. Exp Gerontol, 2014, 59:42-46. DOI:10.1016/j.exger.2014.04.014.
[20] Hongisto MT, Nuotio MS, Luukkaala T, et al.Delay to surgery of less than 12 hours is associated with improved short- and long-term survival in moderate- to high-risk hip fracture patients[J].Geriatr Orthop Surg Rehabil,2019,10:2151459319853142.DOI:10.1177/2151459319853142.
[21] Devinney MJ, Mathew JP, Miles B.Postoperative delirium and postoperative cognitive dysfunction[J]. Anesthesiology, 2018, 129(3):389-391. DOI:10.1097/ALN.0000000000002338.
[22] Clemmesen CG, Palm H, Foss NB.Delay in detection and treatment of perioperative anemia in hip fracture surgery and its impact on postoperative outcomes[J]. Injury,2019,50(11):2034-2039. DOI:10.1016/j.injury.2019.09.001.
[23] 张菊明. 术前营养状态与老年髋部骨折患者术后谵妄的相关性分析[J]. 中国老年保健医学,2021, 19(1):63-66.DOI:10.3969/j.issn.1672-2671.2021.01.020.
[24] 陈俊杉,余金甜,赵思雨,等. ICU患者谵妄风险预测模型研究进展[J]. 护理学报,2019,26(5):15-19. DOI:10.16460/j.issn1008-9969.2019.05.015.
[25] Zhou ZR, Wang WW, Li Y, et al.In-depth mining of clinical data: the construction of clinical prediction model with R[J]. Ann Transl Med, 2019, 7(23):796. DOI:10.21037/atm.2019.08.63.
[26] Collins GS, Reitsma JB, Altman DG, Moons KG.Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis(TRIPOD): the TRIPOD statement[J].BMJ,2015,350:g7594.DOI:10.1136/bmj.g7594.
[27] Li QH, Yu L, Yu ZW, et al.Relation of postoperative serum S100A12 levels to delirium and cognitive dysfunction occurring after hip fracture surgery in elderly patients[J]. Brain Behav, 2019, 9(1):e01176. DOI:10.1002/brb3.1176.
[1] ZHU Ming-yue, DING Xiao-tong, SHI Ji-yuan, Li Zheng. Effects of self-perception of aging on cognitive function in elderly people: a systematic review [J]. Journal of Nursing, 2023, 30(8): 52-57.
[2] YAN Wen-juan, LI Zhuang-miao, YU Meng-ting, LI Shi-en, CHI Yan-hong. Systematic Review of Influence Factors of Stigma in Stroke Patients [J]. Journal of Nursing, 2022, 29(8): 46-52.
[3] YAN Xue, LIU Qian-qian, WEI Si-qi. Qualitative Studies on Influencing Factors of Social Alienation in Gynecological Cancer Patients: A Meta-integration [J]. Journal of Nursing, 2022, 29(20): 39-43.
[4] WU Li, CHEN Rong-feng, ZOU Zi-yu, TANG Hong-mei. Clinical Application of Question Prompt List in Breast Cancer Patients: A Systematic Review [J]. Journal of Nursing, 2022, 29(2): 45-50.
[5] OUYANG Die, YANG Jie, YU Xiang-yu, YUAN Xiao-ling. Effects of Endocrine Therapy on Subjective and Objective Cognitive Function in Patients with Breast Cancer: A Systematic Review [J]. Journal of Nursing, 2022, 29(16): 37-42.
[6] GUO Sheng-li, YUAN Wei, ZHU Ting, LIN Wei-na, CHEN Xiao-rong, XIA Mei-yan. Risk Prediction Model for Inadequate Bowel Preparation before Colonoscopy: A Systematic Review [J]. Journal of Nursing, 2022, 29(1): 35-40.
[7] ZHOU Tian-tian, WANG Qing, HUANG Ping, CHEN Yan. Effect of Quiet Time on Inpatients: A Systematic Review [J]. Journal of Nursing, 2021, 28(9): 29-34.
[8] CHENG Shuang, XIONG Zhen-fang, CAI Yi, CHEN Han-bin, HUI Jing-rui. Qualitative Studies on Parents’ Experiences of Diagnostic Process for Children with Autism Spectrum Disorder: A Systematic Review [J]. Journal of Nursing, 2021, 28(9): 35-42.
[9] LIU Qing-xuan, ZHANG Zhen-xiang, GUO Yun-fei, ZHANG Le-yun, LIN Bei-lei, MEI Yong-xia. Post-traumatic Growth and Related Factors of Stroke Patients in China and Abroad: A Systematic Evaluation [J]. Journal of Nursing, 2021, 28(8): 1-7.
[10] YAN Lu-pei, YAO Li-li, ZHAO Qing-hua, XIAO Ming-chao, LI Yue-rong. Maintenance of Effect of TeamSTEPPS Training in Medical Staff Based on Kirkpatrick Model: A Systematic Review [J]. Journal of Nursing, 2021, 28(8): 17-22.
[11] LI Huan-ze, CHEN Hong-fang, HUANG Li-qun, AN Fang-fang, XU Peng, ZHUANG Miao-qing, ZHANG Lu-yu, WANG Jia-yi. Qualitative Studies on Experience of Emergency Nurses in Hospice Care: A Meta-synthesis [J]. Journal of Nursing, 2021, 28(7): 43-48.
[12] HE Yi-qing, ZHOU Hong, GAO Zu-mei. Qualitative Research on Compassion Fatigue in Nurses: A Meta Synthesis [J]. Journal of Nursing, 2021, 28(6): 33-37.
[13] YI Hui-hui, XIA Zhen-lan, LI Yu, HUANG Hai-yan, TAN Zhen, ZHANG Li-hua. Effect of Structured Bladder Management on Postoperative Urinary Retention of Elderly Patients with Hip Fracture [J]. Journal of Nursing, 2021, 28(6): 65-70.
[14] LIU Rui, HAN Xue-na, YANG Fu-guo, GENG Wen-yao, DING Yao-yao, LI Meng-fei. Barriers to Returning to Work after Stroke: A Qualitative Meta-synthesis [J]. Journal of Nursing, 2021, 28(24): 36-41.
[15] LU Jing-yu, YANG Lian-zhao, CHEN Ling, YANG Yong. Construction and Validation of Risk Prediction Model of Mild Cognitive Impairment in Community-dwelling Elderly Hypertensive Patients [J]. Journal of Nursing, 2021, 28(24): 42-50.
Viewed
Full text


Abstract

Cited

  Shared   
[1] CAI Wen-wen, ZHANG Xing-xing, YE Min-shan, LUO Yan-xia, RUAN Wei-qing, Li Jia. Construction of nursing sensitive quality indicator system for patients undergoing colonoscopy based on structure-process-outcome model[J]. Journal of Nursing, 2023, 30(6): 1 -6 .
[2] CHEN Tong, BI Yu-qing, CHEN Qian, XUE Zi-chen, HUANG Jing-wen, LUO Sheng, LI Wei. Construction of evaluation index system of chronic disease nursing competency for elderly people in communities[J]. Journal of Nursing, 2023, 30(7): 1 -4 .
[3] FENG Ru-zhi, LI Jia, LIANG Jia-yi, GAO Yu-lin. Status quo of professional grief and its influencing factors among nursing 154 postgraduates[J]. Journal of Nursing, 2023, 30(7): 5 -10 .
[4] REN Ying, YU Wei-hua, ZHANG Li, ZHENG Jun-jun, DENG Man, YANG Xia, ZHANG Yu-xi. Current status of life space level of community elderly people and its influencing factors[J]. Journal of Nursing, 2023, 30(7): 11 -15 .
[5] ZHENG Jing, GUAN Yu-xiang, ZHANG Ying, XU Juan, ZOU Ran, WANG Chao. Influencing factors of transformational leadership of head nurses in Hospitals of Traditional Chinese Medicine in Anhui Province: a 873-case study[J]. Journal of Nursing, 2023, 30(7): 16 -19 .
[6] GUO Man-jie, LI Na, ZHAO Yu, WANG Pin, YOU Si-meng, WANG Qing, JI Hong. Mediating effect of loneliness between short video addiction and sleep quality among nursing undergraduates[J]. Journal of Nursing, 2023, 30(7): 20 -24 .
[7] FENG Yu, YANG Hua-ying, GAN Lin, YANG Qian. Application of tree diagram in clinical practice of nursing undergraduates in gastroenterology department[J]. Journal of Nursing, 2023, 30(7): 25 -28 .
[8] ZHAO Ling-yun, CHEN Si-yu, XIE Ying, LU Mei-xiu, HUANG Mei-fang, DAI Xiao-hong. Development and application of virtual reality teaching program for umbilical cord prolapse[J]. Journal of Nursing, 2023, 30(7): 29 -32 .
[9] . [J]. Journal of Nursing, 2023, 30(7): 33 -37 .
[10] . [J]. Journal of Nursing, 2023, 30(7): 38 -43 .