以质量求发展,以服务铸品牌

护理学报 ›› 2023, Vol. 30 ›› Issue (23): 44-49.doi: 10.16460/j.issn1008-9969.2023.23.044

• 循证护理 • 上一篇    下一篇

基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价

杨楠楠1, 蒋慧萍2, 史婷奇1,2   

  1. 1.南京中医药大学鼓楼临床医学院,江苏 南京 210008;
    2.南京大学医学院附属鼓楼医院 护理部,江苏 南京 210008
  • 收稿日期:2023-07-24 出版日期:2023-12-10 发布日期:2024-01-09
  • 通讯作者: 史婷奇(1975-),女,江苏南京人,硕士,主任护师,护理部副主任。E-mail:13912996998@163.com
  • 作者简介:杨楠楠(2000-),女,安徽阜阳人,本科学历,硕士研究生在读。
  • 基金资助:
    南京市卫生科技发展专项资金项目(YKK22074)

Machine learning-based a risk predictive model for deep vein thrombosis in hospitalized patients: a systematic review

YANG Nan-nan1, JIANG Hui-ping2, SHI Ting-qi1,2   

  1. 1. Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China;
    2. Dept of Nursing Administration,Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
  • Received:2023-07-24 Online:2023-12-10 Published:2024-01-09

摘要: 目的 系统评价基于机器学习构建的住院患者深静脉血栓风险预测模型。方法 检索PubMed、Embase、CHINHAL、Cochrane Library、Web of Science、中国知网、万方数据库中关于机器学习对住院患者深静脉血栓预测模型构建相关研究,检索时限为建库至2023年3月。2名研究者独立完成文献筛选并提取资料,使用预测模型构建研究数据提取和质量评价清单对纳入文献进行质量评价。结果 最终纳入11篇研究,包括28个机器学习模型,ROC曲线下面积为0.710~0.976。年龄、血栓史、住院时间、用药史、D-二聚体等实验室指标是主要预测因子。结论 机器学习可更准确识别住院患者发生深静脉血栓的风险,预测性能优于传统风险预测模型。文献整体偏倚风险较低,预测模型适用性水平一般。

关键词: 深静脉血栓, DVT, 机器学习, 护理, 预测模型, 系统评价

Abstract: Objective To systematically evaluate the risk prediction model for deep vein thrombosis in hospitalized patients based on machine learning. Methods We conducted literature research in PubMed, Embase, CHINHAL, Cochrane Library, Web of Science, CNKI, and Wanfang databases for literature on risk prediction models for deep vein thrombosis in hospitalized patients constructed by machine learning. The search period spanned from the inception to March 2023. Two researchers completed literature screening and data extraction independently, and used predictive models to construct a research data extraction and quality evaluation checklist (CHARMS) to evaluate the quality of the included literature and screened high-quality literature for discussion. Results Totally 11 high-quality studies were collected, including 28 machine learning models, with an area under the ROC curve ranging from 0.710 to 0.976. Laboratory indicators such as age, VTE history, length of hospital stay, medication history, and D-dimer were are the main predictive factors. Conclusions Risk prediction models constructed using machine learning can accurately identify the risk of DVT events in hospitalized patients, and its predictive performance is superior to traditional risk prediction models. The available literature on the topic exhibits a low overall risk of bias, however, the applicability level of the prediction model is considered average.

Key words: Deep vein thrombosis, DVT, machine learning, nursing, predictive model, systematic review

中图分类号: 

  • R471
[1] 中华医学会外科学分会血管外科学组.深静脉血栓形成的诊断和治疗指南(第三版)[J].中华普通外科杂志, 2017, 32(9):807-812. DOI:10.3760/cma.j.issn.1007-631X.2017.09. 032.
[2] 邵翔,翟振国,王辰.医院相关性静脉血栓栓塞症[J].中华医学杂志,2018,98(46):3792-3794.DOI:10.3760/cma.j.issn.0376-2491.2018.46.014.
[3] Valerio L, Barco S, Jankowski M, et al.Quality of life 3 and 12 months following acute pulmonary embolism: analysis from a prospective multicenter cohort study[J]. Chest, 2021,9(6):2428-2438. DOI:10.1016/j.chest.2021.01.071.
[4] 张煜,张春艳,金玉,等.内科危重症患者深静脉血栓预防审查指标的制定及障碍因素分析[J].护理学报, 2020,27(4):37-41.DOI:10.16460/j.issn1008-9969.2020.04.037.
[5] Wang P, Wang Y, Yuan Z, et al, Venous thromboembolism risk assessment of surgical patients in Southwest China using real-world data: establishment and evaluation of an improved venous thromboembolism risk model[J]. BMC Med Inform Decis Mak, 2022,22(1):59.DOI:10.1186/s12911-022-01795-9.
[6] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J]. 护理学报,2021, 28(7):30-34.DOI:10.16460/j.issn1008-9969.2021.07.030.
[7] 王贝伦. 机器学习[M].南京:南京东南大学出版社, 2021:355.
[8] 王晶,李玲利,赵春林,等.机器学习在构建护理风险预测模型中的研究进展[J].护士进修杂志,2022, 37(23):2167-2171.DOI:10.16821/j.cnki.hsjx.2022.23.011.
[9] Moher D, Liberati A, Tetzlaff J, et al.Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA statement[J]. PloS Med, 2009,6(7):e1000097. DOI:10. 1371/journal.pmed.1000097.
[10] Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med, 2014, 11(10):e1001744. DOI:10.1371/journal.pmed.1001744.
[11] 徐泽,张贤祚,张林林,等.全膝关节置换术后深静脉血栓预测模型的建立[J].中国矫形外科杂志,2022,30(23):2123-2128.DOI:10.3977/j.issn.1005-8478.2022.23.03.
[12] 刘佳丽,冯自波,谢燕妮,等.极限梯度提升算法风险预测模型在全膝关节置换术后深静脉血栓中的预测性能[J].血管与腔内血管外科杂志,2022, 8(5):563-567;586.DOI:10.19418/j.cnki.issn2096-0646.2022.05.11.
[13] Wang X, Xi H, Geng X, et al.Artificial intelligence-based prediction of lower extremity deep vein thrombosis risk after knee/hip arthroplasty[J]. Clin Appl Thromb Hemost, 2023(29):10760296221139263.DOI:10.1177/10760296221139263.
[14] Shohat N, Ludwick L, Sherman MB, et al.Using machine learning to predict venous thromboembolism and major bleeding events following total joint arthroplasty[J]. Sci Rep, 2023,13(1):2197.DOI:10.1038/s41598-022-26032-1.
[15] Wang KY, Ikwuezunma I, Puvanesarajah V, et al.Using predictive modeling and supervised machine learning to identify patients at risk for venous thromboembolism following posterior lumbar fusion[J]. Global Spine J,2023,13(4):1097-1103. DOI:10.1177/21925682211019361.
[16] Nudel J, Bishara AM, de Geus SWL, et al. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery:an analysis of the MBSAQIP database[J]. Surg Endosc,2021,35(1):182-191.DOI:10.1007/s00464-020-07378-x.
[17] He L, Luo L, Hou X, et al.Predicting venous thromboembolism in hospitalized trauma patients: a combination of the Caprini score and data-driven machine learning model[J]. BMC Emerg Med,2021,21(1):60.DOI:10.1186/s12873-021-00447-x.
[18] Liu H, Yuan H, Wang Y, et al.Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients[J]. Sci Rep, 2021,11(1):12868. DOI:10.1038/s41598-021-92287-9.
[19] Ryan L, Mataraso S, Siefkas A, et al.A machine learning approach to predict deep venous thrombosis among hospitalized patients[J]. Clin Appl Thromb Hemost, 2021(27):1076029621991185. DOI:10.1177/1076029621991185.
[20] Jin S, Qin D, Liang BS, et al.Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables[J]. Int J Med Inform,2022(161):104733. DOI:10.1016/j.ijmedinf.2022.104733.
[21] Lei H, Zhang M, Wu Z, et al, Development and validation of a risk prediction model for venous thromboembolism in lung cancer patients using machine learning[J]. Front Cardiovasc Med,2022(9):845210. DOI:10.3389/fcvm.2022.845210.
[22] Meng L, Wei T, Fan R, et al, Development and validation of a machine learning model to predict venous thromboembolism among hospitalized cancer patients[J]. Asia Pac J Oncol Nurs, 2022,9(12):100128. DOI:10.1016/j.apjon.2022.100128.
[23] 梁菲,王瑜,武海英.妊娠期深静脉血栓的临床特点、危险因素分析及预测模型构建[J].现代妇产科进展,2022,31(1):50-53.DOI:10.13283/j.cnki.xdfckjz.2022.01.008.
[24] Andaur Navarro CL, Damen JAA, van Smeden M, et al, Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models[J]. J Clin Epidemiol, 2023(154):8-22. DOI:10.1016/j.jclinepi.2022.11.015.
[25] Hayssen H, Cires-Drouet R, Englum B, et al, Systematic review of venous thromboembolism risk categories derived from Caprini score[J]. J Vasc Surg Venous Lymphat Disord, 2022,10(6):1401-1409.e7. DOI:10.1016/j.jvsv.2022.05.003.
[26] 旷小羿,侯惠如.基于电子病历数据的风险预测模型在临床护理中的应用现状[J].护理学报,2020,27(16):21-24.DOI:10.16460/j.issn1008-9969.2020.16.021.
[27] 李芸,朱剑清,王惠英,等.基于电子病历的静脉血栓栓塞症风险评估和防控[J].中国病案,2017,18(9):49-51.
[28] Lu Y, Forlenza E, Cohn MR, et al, Machine learning can reliably identify patients at risk of overnight hospital admission following anterior cruciate ligament reconstruction[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(9):2958-2966. DOI:10.1007/s00167-020-06321-w.
[29] Kumar V, Roche C, Overman S, et al.Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set[J].J Shoulder Elbow Surg, 2021,30(5):e225-e236. DOI:10.1016/j.jse.2020.07.042.
[30] 张舒雯,何晖,闫寒冰,等.静脉血栓栓塞症风险评估模型在临床实践中的研究进展[J].中国医药导报,2023,20(7):63-67.DOI:10.20047/j.issn1673-7210.2023.07.13.
[31] 黄光成,周良,石建伟,等.机器学习算法在疾病风险预测中的应用与比较[J].中国卫生资源,2020, 23(4):432-436.DOI:10.13688/j.cnki.chr.2020.19608.
[1] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
[2] 吕璐洋, 王华芬, 卢芳燕, 王燕, 蒋树英. 肝移植患儿家庭照顾者出院准备体验的质性研究[J]. 护理学报, 2023, 30(9): 13-17.
[3] 尚彬, 罗彩凤, 吕妃, 徐剑鸥, 吴静, 张许婷, 吴贤群. 护理人员资质过剩感潜在类别分析及其与离职意愿的关系[J]. 护理学报, 2023, 30(9): 18-24.
[4] 杨晓燕, 王静, 杨亚平. 教育游戏软件在护理教学中应用研究进展[J]. 护理学报, 2023, 30(9): 30-32.
[5] 吴娟, 柏晓玲, 杨曾桢, 李慧, 樊雅. 虚拟模拟训练脚本设计在护理教学中应用的研究进展[J]. 护理学报, 2023, 30(9): 33-36.
[6] 杨琰, 董泗芹, 赵宝生, 李振香. 早中期帕金森病患者运动管理的最佳证据总结[J]. 护理学报, 2023, 30(9): 37-42.
[7] 庞田英, 曾芳芳, 江小兰, 高茹, 谢林艳, 刘维, 鲁娟, 杨华. 喉切除术后吞咽功能评估与康复训练的循证护理实践[J]. 护理学报, 2023, 30(9): 49-54.
[8] 潘姝丞, 卞丽芳, 骆华芳, 黄旭叶, 黄昉芳, 曾颖, 王薇. 护士深静脉血栓形成风险知识与预防实践现状及影响因素分析[J]. 护理学报, 2023, 30(8): 7-11.
[9] 方蕾, 王艳波, 裴霄, 李芳. 基于内省智能理论的精神卫生护理学课程教学实践[J]. 护理学报, 2023, 30(8): 29-33.
[10] 陈茜, 胡露红, 孙玲, 高娉婷, 王璐, 祝贤惠. 多学科协作背景下乳腺癌化疗外周神经毒性症状护理方案的构建与应用[J]. 护理学报, 2023, 30(8): 34-38.
[11] 刘丽, 蔡云霞, 谢美英. 基于SBAR模式构建多媒体可视标准化交接管理系统及其在手术室护理工作交接中的应用[J]. 护理学报, 2023, 30(8): 39-43.
[12] 李海琳, 封亚萍, 张晶, 李鑫. 叙事护理在孕产保健领域中的应用进展[J]. 护理学报, 2023, 30(8): 48-51.
[13] 朱明月, 丁晓彤, 史纪元, 李峥. 自我感知老化对老年人认知功能影响的系统评价[J]. 护理学报, 2023, 30(8): 52-57.
[14] 陈彤, 秘玉清, 陈倩, 薛梓晨, 黄静雯, 罗盛, 李伟. 老年社区慢性病护理服务能力评价指标体系构建研究[J]. 护理学报, 2023, 30(7): 1-4.
[15] 冯如芝, 李佳, 梁嘉仪, 高钰琳. 154名护理硕士研究生职业悲伤现状及影响因素分析[J]. 护理学报, 2023, 30(7): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
[1] 徐建平,金慧,章功年. 经脐一孔法腹腔镜胆囊切除术的护理配合[J]. 护理学报, 2012, 19(1): 56 -58 .
[2] 杨云英,刘凤斌,侯政昆,朱爱利,饶秀珍,古彩红. 重症肌无力患者病情复发或加重的影响因素分析[J]. 护理学报, 2012, 19(4): 60 -65 .
[3] 于海静,刘兵. 国内外母乳喂养相关量表及应用现状[J]. 护理学报, 2012, 19(16): 4 -8 .
[4] 王燕秋,韩斌如,李非. 胃肠道疾病老年住院患者衰弱现况及影响因素研究[J]. 护理学报, 2016, 23(6): 7 -11 .
[5] 胡力云,吕露露,徐小菁,柳清霞,郭红. 我国开展循证护理实践的SWOT分析[J]. 护理学报, 2016, 23(6): 69 -72 .
[6] 张伟伟,汪姣姣,方云. 腔内心电图定位技术对经颈内静脉植入输液港患者的效果观察[J]. 护理学报, 2016, 23(20): 64 -66,67 .
[7] 叶增杰,阮小丽,曾珍,谢琼,程梦慧,彭超华,卢咏梅,邱鸿钟. 中文版10条目心理韧性量表在护生群体中的信效度分析[J]. 护理学报, 2016, 23(21): 9 -13 .
[8] 王悦,付菊芳,白燕妮,王美霞,杨艳,赵卿,杨靖. 癌症患者对化疗导致周围神经病变症状体验及应对方式的质性研究[J]. 护理学报, 2016, 23(22): 9 -13 .
[9] 刘琤琤,吴莉,李敏,傅海霞,邹健如,许睿. 辰时中药足浴联合艾灸足三里对腹腔镜胆囊切除患者 术后胃肠功能的影响[J]. 护理学报, 2017, 24(15): 60 -63 .
[10] 韩斌如,李秋萍. 老年患者手术风险评估工具的应用进展[J]. 护理学报, 2017, 24(24): 31 -34 .