以质量求发展,以服务铸品牌

护理学报 ›› 2024, Vol. 31 ›› Issue (10): 1-7.doi: 10.16460/j.issn1008-9969.2024.10.001

• 研究生园地 •    下一篇

基于生活方式相关指标的非肥胖人群非酒精性脂肪肝预测模型的构建

欧阳蝶1, 许豆豆2a, 孙燕荣2b, 陈莹2b, 吕安康2b, 吴蓓雯2a   

  1. 1.上海交通大学 护理学院,上海 200025;
    2.上海交通大学医学院附属瑞金医院 a.护理部;b.体检中心,上海 200025
  • 收稿日期:2023-11-22 出版日期:2024-05-25 发布日期:2024-06-06
  • 通讯作者: 吴蓓雯(1970-),女,上海人,博士,主任护师。E-mail: gaoan2005new@163.com
  • 作者简介:欧阳蝶(2000-),女,四川成都人,本科学历,硕士研究生在读。

Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators

OUYANG Die1, XU Dou-dou2a, SUN Yan-rong2b, CHEN Ying2b, LV An-kang2b, WU Bei-wen2a   

  1. 1. School of Nursing, Shanghai Jiao Tong University, Shanghai 200025, China;
    2a. Dept. of Nursing Administration; 2b. Physical Examination Centre, Ruijin Hospital, Medical College, Shanghai Jiao Tong University, Shanghai 200025, China
  • Received:2023-11-22 Online:2024-05-25 Published:2024-06-06

摘要: 目的 构建基于生活方式相关指标的非肥胖人群非酒精性脂肪肝预测模型。方法 前瞻性队列研究,便利选取2021年4—10月于上海市某三级甲等综合性医院参加健康体检的992例非肥胖者,随访至2023年10月,根据随访腹部超声结果,判断受试者是否发生非酒精性脂肪肝,分为未发生组(n=834)与发生组(n=158),比较2组一般资料、体格检查、实验室检查和生活方式相关指标情况。采用LASSO回归和Logistic回归分析影响因素,构建预测模型,绘制列线图。结果 通过多因素分析,最终纳入男性(OR=2.375)、年龄(OR=1.044)、高收入水平(OR=0.512)、体质量指数24.0~27.9(OR=3.556)、蛋类(OR=1.008)、蔬菜类(OR=0.998)与含糖饮料(OR=1.002)摄入量、静坐时间(OR=1.199)与睡眠时间(OR=0.661)构建预测模型。模型的ROC曲线下面积为0.846,内部验证的ROC曲线下面积为0.819,Hosmer-Lemeshow检验χ2=7.478,P=0.486,Calibration校准曲线与决策曲线分析显示模型具有较好的校准度与临床实用性。结论 本研究构建的预测模型具有科学性与实用性,预测效能良好,可简便、有效地预测非肥胖人群非酒精性脂肪肝的发生风险。

关键词: 非肥胖, 非酒精性脂肪肝, 生活方式, 预测模型, 列线图

Abstract: Objective To construct a prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators. Methods A prospective cohort study was conducted to select 992 non-obese subjects who participated in physical examination in a tertiary grade-A hospital in Shanghai from April to October 2021 and were followed up until October 2023. The subjects were confirmed whether they had developed non-alcoholic fatty liver disease through abdominal ultrasound during the follow-up and then they were divided into non-occurrence group (n=834) and occurrence group (n=158). General information, results of physical examination and laboratory examination and lifestyle-related indicators were compared between the two groups. LASSO regression and logistic regression were used to analyze the influencing factors and build a prediction model, and a nomogram was drawn. Results Through multi-factor analysis, male (OR=2.375), age (OR=1.044), high income level (OR=0.512), body mass index of 24.0~27.9(OR=3.556), intake of eggs (OR=1.008), vegetable (OR=0.998) and sugar-sweetened beverage (OR=1.002), sitting time (OR=1.199) and sleep time (OR=0.661) were used to construct the prediction model. The area under ROC curve of the model was 0.846, and the area under ROC curve of internal validation was 0.819. The Hosmer-Lemeshow test results of χ2=7.478, P=0.486 indicated good fit. Calibration curve and decision curve analysis showed that the model had good calibration degree and was clinically applicable. Conclusion The prediction model constructed in this study is scientific and practical, with good prediction efficiency, and can easily and effectively predict the risk of non-alcoholic fatty liver disease in non-obese population.

Key words: non-obese, non-alcoholic fatty liver disease, lifestyle, prediction model, nomogram

中图分类号: 

  • R473.5
[1] Younossi ZM, Golabi P, Paik JM, et al.The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology,2023, 77(4):1335-1347.DOI:10.1097/HEP.0000000000000004.
[2] Wijarnpreecha K, Li F, Lundin SK, et al.Higher mortality among lean patients with non-alcoholic fatty liver disease despite fewer metabolic comorbidities[J]. Aliment Pharmacol Ther,2023,57(9):1014-1027. DOI:10.1111/apt.17424.
[3] Hu PF, Zeng X, Zou ZY, et al.The presence of NAFLD in nonobese subjects increased the risk of metabolic abnormalities than obese subjects without NAFLD: a population-based cross-sectional study[J]. Hepatobiliary Surg Nutr, 2021,10(6):811-824. DOI:10.21037/hbsn-20-263.
[4] Zhu W, Shi P, Fu J, et al.Development and application of a novel model to predict the risk of non-alcoholic fatty liver disease among lean pre-diabetics with normal blood lipid levels[J]. Lipids Health Dis,2022,21(1):149. DOI:10.1186/s12944-022-01752-5.
[5] Cai X, Aierken X, Ahmat A, et al.A nomogram model based on noninvasive bioindicators to predict 3-year risk of nonalcoholic fatty liver in nonobese Mainland Chinese: a prospective cohort study[J]. Biomed Res Int,2020,2020: 8852198. DOI: 10.1155/2020/8852198.
[6] Liu L, Shi X, Gao J, Xu C, Liu X.Predictive risk factors of nonalcoholic fatty liver disease in a lean Chinese population[J]. J Pers Med, 2022, 12(12):1958. DOI:10.3390/jpm12121958.
[7] 中华医学会肝病学分会脂肪肝和酒精性肝病学组,中国医师协会脂肪性肝病专家委员会.非酒精性脂肪性肝病防治指南(2018年更新版)[J].实用肝脏病杂志, 2018, 21(2):177-186. DOI:10.3969/j.issn.1672-5069.2018.02.007.
[8] Riley RD, Ensor J, Snell KIE, et al.Calculating the sample size required for developing a clinical prediction model[J]. BMJ,2020,368:m441. DOI:10.1136/bmj.m441.
[9] 李培林,张翼.中国中产阶级的规模、认同和社会态度[J]. 社会,2008,28(2):1-19.DOI:10.15992/j.cnki.31-1123/c.2008.02.003.
[10] 中国营养学会. 中国居民膳食指南(2016)[M]. 北京: 人民卫生出版社,2016:269-275.
[11] Buysse DJ, Reynolds CF, Monk TH, et al.The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research[J]. Psychiatry Res,1989,28(2):193-213. DOI:10.1016/0165-1781(89)90047-4.
[12] 刘贤臣,唐茂芹,胡蕾,等.匹兹堡睡眠质量指数的信度和效度研究[J].中华精神科杂志,1996(2):103-107.
[13] 屈宁宁,李可基. 国际体力活动问卷中文版的信度和效度研究[J].中华流行病学杂志,2004,25(3):265-268. DOI:10.3760/j.issn:0254-6450.2004.03.021.
[14] 樊萌语,吕筠,何平平. 国际体力活动问卷中体力活动水平的计算方法[J].中华流行病学杂志,2014, 35(8):961-964. DOI:10.3760/cma.j.issn.0254-6450.2014.08.019.
[15] 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版)[J].中华肝脏病杂志,2010,18(3):163-166.DOI:10.3760/cma.j.issn.1007-3418.2010.03.002.
[16] Li J, Zou B, Yeo YH, et al.Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and Meta-analysis[J]. Lancet Gastroenterol Hepatol, 2019, 4(5):389-398. DOI:10.1016/S2468-1253(19)30039-1.
[17] Deng J, Zhang Y, Bu L, et al.The prevalence, popular trends, and associated and predictive factors of non-obese fatty liver disease[J]. Front Endocrinol (Lausanne), 2021,12:744710. DOI:10.3389/fendo.2021.744710.
[18] Dolce A, Della Torre S.Sex, nutrition, and NAFLD: relevance of environmental pollution[J]. Nutrients,2023,15(10):2335. DOI:10.3390/nu15102335.
[19] 贾国瑜,李雪粉,王璐,等. 2型糖尿病患者社会经济地位与非酒精性脂肪肝相关性的回顾性队列研究[J]. 中华肝脏病杂志,2015,23(10):760-764. DOI:10.3760/cma.j.issn.1007-3418.2015.10.010.
[20] 钱怡,周清平,梁振宁,等. 慢性病患者参与医患共同决策影响因素的Meta分析[J]. 护理学报,2023,30(20):19-24. DOI:10.16460/j.issn1008-9969.2023.20.019.
[21] Cho Y, Chang Y, Ryu S, et al.Skeletal muscle mass to visceral fat area ratio as a predictor of NAFLD in lean and overweight men and women with effect modification by sex[J]. Hepatol Commun,2022,6(9):2238-2252. DOI:10.1002/hep4.1975.
[22] 林丽君,金瑛,朱可嘉,等. 肌少症筛查量表在老年患者中的应用进展[J]. 护理学报,2023,30(20):10-15. DOI:10.16460/j.issn1008-9969.2023.20.010.
[23] Mokhtari Z, Poustchi H, Eslamparast T, et al.Egg consumption and risk of non-alcoholic fatty liver disease[J]. World J Hepatol,2017,9(10):503-509. DOI:10.4254/wjh.v9.i10.503.
[24] Zhang XL, Wang TY, Targher G, et al.Lifestyle interventions for non-obese patients both with, and at risk, of non-alcoholic fatty liver disease[J]. Diabetes Metab J, 2022, 46(3):391-401. DOI:10.4093/dmj.2022.0048.
[25] Kim SA, Shin S.Fruit and vegetable consumption and non-alcoholic fatty liver disease among Korean adults: a prospective cohort study[J]. J Epidemiol Community Health, 2020,74(12):1035-1042. DOI:10.1136/jech-2020-214568.
[26] Yang J, Luo S, Li R, et al.Sleep factors in relation to metabolic dysfunction-associated fatty liver disease in middle-aged and elderly Chinese[J]. J Clin Endocrinol Metab,2022,107(10):2874-2882. DOI:10.1210/clinem/dgac428.
[27] Akram ST, Ewy MW, Said A.Sleep disruption in nonalcoholic fatty liver disease: what is the role of lifestyle and diet?[J]. Eur J Gastroenterol Hepatol, 2021, 33(1S Suppl 1):e308-e312. DOI:10.1097/MEG.0000000000002049.
[1] 曹娟, 李方, 于跃, 戴丽, 杨丹丹, 李志华, 徐欣怡, 戴琪, 陈柯宇. 食管癌术后静脉血栓栓塞症风险预测模型的构建及验证[J]. 护理学报, 2024, 31(8): 63-68.
[2] 周越, 张杰, 潘宇帆, 戴雨, 孙羽健, 肖益, 余雨枫. 机械通气患者衰弱风险预测模型的系统评价[J]. 护理学报, 2024, 31(6): 56-61.
[3] 邢春凤, 李国新, 张广清, 刘雅鑫, 孙晓伟. 产妇产褥期乳房胀痛危险因素分析及风险预测模型构建[J]. 护理学报, 2024, 31(3): 6-11.
[4] 王丽云, 张明慧, 张新月, 沙凯辉. 产后压力性尿失禁风险预测模型的系统评价[J]. 护理学报, 2024, 31(3): 57-62.
[5] 邬馨益, 徐林燕, 陈卓琦, 朱徐乐, 赵磊. 老年人运动认知功能减退综合征风险预测模型的构建与验证[J]. 护理学报, 2024, 31(10): 73-78.
[6] 王微, 路潜, 宋艳茹, 柯桑桑, 刘春蕾. 我国护理核心期刊近5年预测模型研究论文分析[J]. 护理学报, 2024, 31(1): 37-41.
[7] 史婷婷, 李婷, 黄友鹏, 赵媛, 朱晓丽, 周梦娟, 陈云梅. 2型糖尿病患者合并骨质疏松风险预测模型的范围综述[J]. 护理学报, 2024, 31(1): 52-57.
[8] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
[9] 叶磊, 张爱琴, 荣芸, 夏广惠. 老年髋部骨折患者术后谵妄风险预测模型的系统评价[J]. 护理学报, 2023, 30(7): 48-52.
[10] 黄丽华, 翟巾帼, 田金徽, 孔淦霞, 王雪岩, 陈莉瑾, 袁心愿, 耿薪茜, 陈昭桐. 妊娠期生活方式干预对妊娠期高血压疾病进展及母婴结局影响的Meta分析[J]. 护理学报, 2023, 30(24): 38-42.
[11] 孙菲, 刘敏, 胡珊珊, 吴蕾, 刘君, 李萍. 基于Meta分析构建早产儿母亲泌乳建立风险预测评分模型[J]. 护理学报, 2023, 30(23): 1-5.
[12] 杨楠楠, 蒋慧萍, 史婷奇. 基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2023, 30(23): 44-49.
[13] 张海燕, 于卫华, 张利, 任影, 郑俊俊. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J]. 护理学报, 2023, 30(22): 13-19.
[14] 周飞洋, 邓露, 龙柯宇, 杨婷婷, 谢琳琳, 吕倩, 郭春波. 老年人认知衰弱风险预测模型的系统评价[J]. 护理学报, 2023, 30(19): 45-50.
[15] 刘雪琴, 刘晓辉, 平智广. 维持性血液透析患者营养不良风险列线图模型及在线计算器的构建与验证研究[J]. 护理学报, 2023, 30(16): 12-18.
Viewed
Full text


Abstract

Cited

  Shared   
No Suggested Reading articles found!