以质量求发展,以服务铸品牌

护理学报 ›› 2023, Vol. 30 ›› Issue (23): 1-5.doi: 10.16460/j.issn1008-9969.2023.23.001

• 研究生园地 •    下一篇

基于Meta分析构建早产儿母亲泌乳建立风险预测评分模型

孙菲1, 刘敏2a, 胡珊珊2a, 吴蕾2b, 刘君2b, 李萍2c   

  1. 1.江南大学无锡医学院,江苏 无锡 214122;
    2.无锡市妇幼保健院 a.护理部;b.产科;c.新生儿科,江苏 无锡 214002
  • 收稿日期:2023-07-15 出版日期:2023-12-10 发布日期:2024-01-09
  • 通讯作者: 刘敏(1976-),女,江苏无锡人,硕士,副主任护师,护理部主任。E-mail: liumin_76@163.com
  • 作者简介:孙菲(1999-),女,河南信阳人,本科学历,硕士研究生在读,护师。
  • 基金资助:
    无锡市科技发展资金项目(Y20212036); 无锡市中医药管理局科技项目(ZYKJ202113); 无锡市妇幼健康科研和适宜技术推广项目(FYKY202201)

Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis

SUN Fei1, LIU Min2a, HU Shan-shan2a, WU Lei2b, LIU Jun2b, LI Ping2c   

  1. 1. Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China;
    2a. Dept. of Nursing Administration; 2b. Dept. of Obstetrics; 2c.Dept. of Neonatology, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
  • Received:2023-07-15 Online:2023-12-10 Published:2024-01-09

摘要: 目的 构建并验证早产儿母亲泌乳建立风险预测评分模型,为早期识别早产母亲泌乳建立危险人群提供借鉴。方法 运用Meta分析早产母亲泌乳建立的危险因素,以各危险因素综合危险度的自然对数为系数,以早产母亲泌乳建立失败发生率与未发生率比值的自然对数为模型的系数,建立模型;再根据各危险因素的系数对风险因素进行赋分,构建风险预测评分模型。收集2022年3—9月112例早产儿母亲资料,分析该风险预测评分模型的预测性能。结果 早产母亲泌乳建立模型Logit(P)=-0.072+0.389×是否年龄≥30岁+0.452×是否合并妊娠期高血压疾病+1.008×是否合并妊娠期糖尿病+0.434×是否产后抑郁+0.538×是否泌乳II期启动延迟+0.607×是否每日挤奶频次<8次+0.515×是否开奶时间≥6 h+0.445×是否每日睡眠时间<8 h;模型ROC曲线下面积为0.900(95%CI:0.841~0.958),约登指数为0.717,临界值为2.070,概率值为88.8%,敏感度为0.889,特异度为0.828。早产母亲泌乳建立风险预测评分模型验证结果显示,得分为0~113分,评分>55.5分为高危人群,ROC曲线下面积为0.900(95%CI:0.842~0.958),约登指数为0.717,敏感度为0.889,特异性为0.828,阳性预测值为82.8%,阴性预测值为88.9%,总体预测准确率为93.1%。结论 基于Meta分析构建的早产母亲泌乳建立风险预测评分模型有较好的预测效能,且临床使用便捷,可用于筛查早产母亲泌乳建立危险人群。

关键词: 泌乳建立, 预测模型, 风险评分, Meta分析, 危险因素, 母乳喂养

Abstract: Objective To construct and verify the prediction scoring model for lactation risk of mothers experiencing premature birth, and provide reference for early identification of risk group. Methods Meta-analysis was used to analyze the factors of lactation risk in mothers of premature infants, and the model was established using the natural logarithm of the overall risk level for each risk factor as the coefficient, and the natural logarithm of the ratio between the failure rate and non-failure rate of lactation among mothers of preterm infants as the model coefficient. The risk factors were then assigned scores based on their respective coefficient values to construct the model. The data of 112 mothers experiencing premature birth from March to September, 2022 were collected, and the predictive performance of the model was analyzed. Results The model was constructed with logit(P)=-0.072+0.389 age+0.452 gestational hypertension+1.008 gestational diabetes+0.434 postpartum depression+0.538 lactation phase II start-up delay+0.607 daily milking frequency+0.515 milk opening time+0.445 lack of sleep. The area under the ROC curve of the model was 0.900 (95%CI: 0.841~0.958); the Jordan index 0.717, and the critical value 2.070. The probability value of the model was 88.8%, with sensitivity and specificity of 0.889 and 0.828 respectively. The verification results of the model showed that the score ranged from 0 to 113, and a score above 55.5 indicated a high risk of lactation. The area under ROC curve was 0.900 (95%CI:0.842~0.958), and the Jordan index 0.717, with the sensitivity and specificity of 0.889 and 0.828. The positive predictive value was 82.8%, and the negative predictive value 82.8%. Conclusion The prediction scoring model of lactation risk of mothers experiencing premature birth based on meta-analysis has good prediction efficiency, and can be used for lactation screening of premature mothers and establishment of risk groups.

Key words: lactation establishment, prediction model, risk scoring, Meta analysis, risk factor, breastfeeding

中图分类号: 

  • R473.71
[1] 高雪莲, 孙瑜, 张美华. 母乳喂养与人类泌乳学[M]. 6版. 北京: 人民卫生出版社, 2021.
[2] 栾丹丹, 于秀荣, 王云芳, 等. NICU住院早产儿母亲在母婴分离期的泌乳量及相关因素研究[J].中华护理杂志, 2018, 53(1):65-70.
[3] Hoban R, Poeliniz CM, Somerset E, et al. Mother's own milk biomarkers predict coming to volume in pump-dependent mothers of preterm infants[J]. J Pediatr, 2021, 228: 44-52.e3. DOI:10.1016/j.jpeds.2020.09.010.
[4] Hoban R, Bigger H, Schoeny M, et al.Milk volume at 2 weeks predicts mother's own milk feeding at neonatal intensive care unit discharge for very low birthweight infants[J]. Breastfeed Med,2018,13(2):135-141.DOI:10.1089/bfm.2017.0159.
[5] Medina PC, Hoban R, Schoeny ME, et al.Prepregnancy body mass index is associated with time-dependent changes in secretory activation measures during the first 7 days postpartum in breast pump-dependent mothers of premature infants[J]. Breastfeed Med, 2022, 17(2):173-181. DOI:10.1089/bfm.2021.0167.
[6] Dong D, Ru X, Huang X, et al.A prospective cohort study on lactation status and breastfeeding challenges in mothers giving birth to preterm infants[J]. Int Breastfeed J, 2022, 17(1):6. DOI:10.1186/s13006-021-00447-4.
[7] Ru X, Huang X, Feng Q.Successful full lactation achieved by mothers of preterm infants using exclusive pumping[J]. Front Pediatr, 2020, 8:191. DOI:10.3389/fped.2020.00191.
[8] 曾宪涛, 刘慧, 陈曦, 等. Meta分析系列之四:观察性研究的质量评价工具[J]. 中国循证心血管医学杂志, 2012, 4(4):297-299.
[9] 艾飞玲, 胡葵茹, 石钰霖, 等. 基于纽卡斯尔-渥太华量表对中国吸烟队列研究文献的质量评价[J]. 中华疾病控制杂志, 2021,25(6):722-729.DOI:10.16462/j.cnki.zhjbkz.2021.06.018.
[10] 陈俊慧, 张曼, 刘水澎, 等. 基于超声征象多因素Logistic回归β值积分法的甲状腺癌风险预测研究[J]. 中国癌症杂志, 2019, 29(4):289-293. DOI:10.19401/j.cnki.1007-3639.2019.04.008.
[11] Parker LA, Cacho N, Bendixen MM, et al.Measures of lactation outcomes in women delivering preterm infants[J]. Nurs Res,2021,70(3):193-199.DOI:10.1097/NNR.0000000000000502.
[12] Levis B, Negeri Z, Sun Y, et al.Accuracy of the edinburgh postnatal depression scale (EPDS) for screening to detect major depression among pregnant and postpartum women: systematic review and Meta-analysis of individual participant data[J]. BMJ, 2020, 371: m4022. DOI:10.1136/bmj.m4022.
[13] Hoban R, Patel AL, Medina PC,et al.Human milk biomarkers of secretory activation in breast pump-dependent mothers of premature infants[J].Breastfeed Med, 2018, 13(5): 352-360. DOI:10.1089/bfm.2017.0183.
[14] 董小英, 商祯茹, 王娟, 等. 新生儿重症监护病房早产儿母婴分离期内母亲泌乳量不足影响因素分析[J]. 中国妇幼保健, 2020, 35(15):2756-2759. DOI:10.19829/j.zgfybj.issn.1001-4411.2020.15.006.
[15] 蒋玮玮, 孔雯, 姚周燕, 等. NICU早产儿母婴分离期内母亲泌乳量不足发生率及影响因素研究[J].中国妇幼保健, 2019, 34(17):3996-3998.
[16] 李姣姣, 于秀荣, 王云芳, 等. 母婴分离的早产产妇孕期体质量指数增幅与产后泌乳量的相关性研究[J]. 解放军护理杂志, 2021, 38(9):1-5.
[17] 栾丹丹, 于秀荣, 方秀新. 早产儿母亲在患儿住院期间泌乳量不足的相关因素分析[J]. 中国妇幼保健, 2018, 33(4):756-759.
[18] 时荣华. 新生早产儿重症监护室母婴分离期间母亲泌乳量不足的影响因素[J]. 中国妇幼卫生杂志, 2021, 12(5): 40-43. DOI:10.19757/j.cnki.issn1674-7763.2021.05.009.
[19] 魏立娜, 付丽, 张华. 重症监护室早产儿母婴分离期内母亲泌乳量不足影响因素调查[J]. 中国妇幼保健, 2020, 35(22):4339-4341. DOI:10.19829/j.zgfybj.issn.1001-4411.2020.22.059.
[20] Suwaydi MA, Wlodek ME, Lai CT, et al.Delayed secretory activation and low milk production in women with gestational diabetes: a case series[J]. BMC Pregnancy Childbirth, 2022, 22(1):350. DOI:10.1186/s12884-022-04685-0.
[21] Lemay DG, Ballard OA, Hughes MA, et al.RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation[J]. PLoS One, 2013, 8(7):e67531. DOI:10.1371/journal.pone.0067531.
[22] 谢晓星, 赵敏慧. 229例产科监护室高危妊娠产妇泌乳启动延迟现状及影响因素分析[J]. 护理学报, 2021, 28(7): 49-53. DOI:10.16460/j.issn1008-9969.2021.07.049.
[23] 刘君, 刘敏, 蒋盘华, 等. 中国产妇泌乳Ⅱ期启动延迟发生率及影响因素的系统评价[J].中华现代护理杂志, 2021, 27(10):1300-1305.
[24] Scholten N, Mause L, Horenkamp-Sonntag D, et al.Initiation of lactation and the provision of human milk to preterm infants in German neonatal intensive care units from the mothers' perspective[J]. BMC Pregnancy Childbirth, 2022, 22(1):158. DOI:10.1186/s12884-022-04468-7.
[25] 栾丹丹, 于秀荣, 蔺香云. 早产儿母亲泌乳Ⅱ期启动时间与产后早期泌乳量的相关性研究[J].中华现代护理杂志, 2018, 24(8):874-879.
[1] 周梦娟, 朱晓丽, 张态, 段剑锋, 罗宇梅, 马维莉, 陆涵, 史婷婷, 杨怡霖, 李婷, 查耀蕾, 赵媛. 急性胰腺炎非重症患者住院时间延长预测模型的构建及验证[J]. 护理学报, 2023, 30(9): 7-12.
[2] 陈燕, 钱莉, 徐瑾. 父亲模仿婴儿吸吮乳头手法干预对母婴分离初产妇母乳喂养的效果观察[J]. 护理学报, 2023, 30(8): 74-78.
[3] 叶磊, 张爱琴, 荣芸, 夏广惠. 老年髋部骨折患者术后谵妄风险预测模型的系统评价[J]. 护理学报, 2023, 30(7): 48-52.
[4] 黄丽华, 翟巾帼, 田金徽, 孔淦霞, 王雪岩, 陈莉瑾, 袁心愿, 耿薪茜, 陈昭桐. 妊娠期生活方式干预对妊娠期高血压疾病进展及母婴结局影响的Meta分析[J]. 护理学报, 2023, 30(24): 38-42.
[5] 杨楠楠, 蒋慧萍, 史婷奇. 基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2023, 30(23): 44-49.
[6] 张海燕, 于卫华, 张利, 任影, 郑俊俊. 2型糖尿病老年患者生活空间移动性受限风险预测模型研究[J]. 护理学报, 2023, 30(22): 13-19.
[7] 钱怡, 周清平, 梁振宁, 王晨曦, 刘涵月, 于瑶, 玉素扑江·图尔荪, 王冬. 慢性病患者参与医患共同决策影响因素的Meta分析[J]. 护理学报, 2023, 30(20): 19-23.
[8] 周飞洋, 邓露, 龙柯宇, 杨婷婷, 谢琳琳, 吕倩, 郭春波. 老年人认知衰弱风险预测模型的系统评价[J]. 护理学报, 2023, 30(19): 45-50.
[9] 刘雪琴, 刘晓辉, 平智广. 维持性血液透析患者营养不良风险列线图模型及在线计算器的构建与验证研究[J]. 护理学报, 2023, 30(16): 12-18.
[10] 彭仁梅, 钱荣, 李亚军, 段缓, 陈莲芳, 刘玉文. ICU转出患者睡眠障碍风险列线图预测模型的构建与验证[J]. 护理学报, 2023, 30(15): 16-22.
[11] 张晓岚, 苏小花, 张敬. 剖宫产孕妇认知功能障碍风险预测模型的构建[J]. 护理学报, 2023, 30(12): 73-78.
[12] 张程婕, 井坤娟, 刘冬雪. 列线图与CART决策树模型对老年脑卒中患者病耻感预测效能的比较[J]. 护理学报, 2023, 30(11): 7-12.
[13] 张侍玉, 王玉然, 赵姝姝, 王杰敏. 头颈癌放疗患者重度放射性口腔黏膜炎风险预测模型的构建与验证[J]. 护理学报, 2023, 30(10): 68-72.
[14] 李梦娜, 刘晓夏, 陈美文, 赵蕊, 葛莉娜. 随机森林与Logistic回归模型对子宫内膜癌患者加速康复外科术后早期出院预测的比较[J]. 护理学报, 2023, 30(1): 17-21.
[15] 楚文强, 彭俊祥, 李丹玲. 基于Logistic回归分析颅脑手术后炎症指标动态变化及对颅内感染的诊断价值[J]. 护理学报, 2023, 30(1): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
[1] 孙琪, 李丹钰, 宗旭倩, 袁长蓉, 罗菁, 黄青梅, 张雯, 杨瑒, 吴傅蕾. 移动医疗在癌症老年患者院外管理中的应用进展[J]. 护理学报, 2023, 30(22): 36 -39 .
[2] 任影, 于卫华, 张利. 医养结合型养老机构老年人可逆性认知衰弱现状及影响因素分析[J]. 护理学报, 2023, 30(23): 6 -11 .
[3] 张鹏博, 梅永霞, 张振香, 林蓓蕾, 薛利红, 刘志薇. 脑卒中患者焦虑症状潜在剖面影响因素分析[J]. 护理学报, 2023, 30(23): 12 -17 .
[4] 陈青青, 孔玲, 蒋珊, 朱求丽, 王燕, 苏明霞, 高丽芳, 陈晶梅. 新入职护士置信职业行为指标的构建[J]. 护理学报, 2023, 30(23): 18 -22 .
[5] 刘鸿飞, 王芳, 李晖凤, 陈晓荷, 田莉, 黎蔚华. 胸痛中心护理单元建设与管理标准的构建[J]. 护理学报, 2023, 30(23): 23 -28 .
[6] 佘佳晨, 张金燕, 张瑞星, 梅永霞, 李洪峰. 工作中伦理型领导问卷的汉化及在护士群体中的信效度检验[J]. 护理学报, 2023, 30(23): 29 -34 .
[7] 蒲艾琳, 罗羽. 护理硕士研究生科研能力训练教学现状与启示[J]. 护理学报, 2023, 30(23): 35 -39 .
[8] 杨婷婷, 康佳敏, 邢雪燕, 胡惠惠, 涂淑敏. 国内外麻醉护士在职教育培训课程的研究进展[J]. 护理学报, 2023, 30(23): 40 -43 .
[9] 杨楠楠, 蒋慧萍, 史婷奇. 基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价[J]. 护理学报, 2023, 30(23): 44 -49 .
[10] 王多, 乔秋阁, 刘茹茹, 张妹英, 李亚伟, 高克娜, 高翠, 史蕾, 王文耀. 基于IMB模型结直肠癌术后居家患者经口营养管理的最佳证据总结[J]. 护理学报, 2023, 30(23): 50 -56 .