以质量求发展,以服务铸品牌

护理学报 ›› 2023, Vol. 30 ›› Issue (13): 6-12.doi: 10.16460/j.issn1008-9969.2023.13.006

• 研究生园地 • 上一篇    下一篇

Caprini评分联合凝血指标构建PICC相关性血栓风险可视化模型

项晓婷1,2,3, 张会2,3,1, 苏畅2,3, 胡桑2,3, 张真2,3, 许静1, 仲蕾1, 陆雅维1   

  1. 1.安徽医科大学护理学院,安徽 合肥 230601;
    2.安徽医科大学第一附属医院,安徽 合肥 230032;
    3.安徽省公共卫生临床中心,安徽 合肥 230032
  • 收稿日期:2023-02-15 出版日期:2023-07-10 发布日期:2023-08-04
  • 通讯作者: 张会(1973-),女,安徽合肥人,硕士,硕士研究生导师,主任护师。E-mail:zhanghui310@126.com
  • 作者简介:项晓婷(1997-),女,安徽六安人,本科学历,硕士研究生在读。
  • 基金资助:
    2021年安徽省护理学会科研课题立项项目(AHHLb202104); 2023年度安徽医科大学护理学院研究生青苗培育项目(hl12023060)

Construction of PICC-catheter related thrombosis risk visualization model with Caprini Score and coagulation index

XIANG Xiao-ting1,2,3, ZHANG Hui2,3,1, SU Chang2,3, HU Sang2,3, ZHANG Zhen2,3, XU Jing1, ZHONG Lei1,LU Ya-wei1   

  1. 1. School of Nursing, Anhui Medical University, Hefei 230601,China;
    2. the First Affiliated Hospital of Anhui Medical University,Hefei 230032,China;
    3. Anhui Provincial Public Health Clinical Center, Hefei 230032,China
  • Received:2023-02-15 Online:2023-07-10 Published:2023-08-04

摘要: 目的 联合Caprini评分和凝血指标D-二聚体构建PICC相关性血栓可视化模型。方法 回顾性纳入了2018年9月—2022年9月在我院行PICC置管并维护的413例患者,收集患者的人口学资料、置管资料、Caprini评分以及D-二聚体等相关指标,通过多因素Logistic回归模型分析独立危险因素,MedCalc软件分别绘制Caprini评分、D-二聚体以及两者联合的受试者工作特征曲线(ROC曲线)并对比曲线下面积(AUC),采用R软件绘制列线图。结果 本研究共纳入413例患者,发生PICC相关性血栓患者为38例(9.2%)。多因素Logistic回归分析结果显示,年龄、Caprini评分、D-二聚体、BMI、既往病史、化疗、导管规格、肢体选择为发生PICC相关性血栓发生的独立危险因素。对比ROC曲线下面积(AUC):Caprini评分单独预测为0.714,D-二聚体单独预测为0.636,两者联合预测为0.876,(95%CI:0.840-0.906)。通过对分析结果的可视化处理,显示联合预测模型的区分度较高,Brier评分和校正曲线都表现了较好的校准度。H-L检验(χ2=3.505,P>0.05)结果显示,该模型的拟合度较好。结论 Caprini评分联合凝血指标D-二聚体构建的PICC相关性血栓可视化模型具有较好的预测效果,可以有效地预测PICC相关性血栓的早期风险,为临床治疗提供有力的参考依据。

关键词: 经外周静脉置入中心静脉导管, PICC相关性血栓, Caprini评分, D-二聚体, 可视化模型

Abstract: Objective To construct a visualization model of PICC-catheter related thrombosis risk with Caprini score and D-dimer. Methods A total of 413 patients who received PICC catheterization and maintenance in our hospital from September 2018 to September 2022 were retrospectively included. Demographic data, catheterization data, Caprini score, D-dimer and other related indicators of patients were collected. Independent risk factors were analyzed by using multiple logistic regression. Caprini score, D-dimer and their combined receiver operating characteristic curve (ROC curve) were drawn respectively by MedCalc software, and the area under the curve (AUC) was compared. Results The incidence of PICC-associated thrombosis was 9.2% (38 patients). Multiple logistic regression showed that age, Caprini score, D-dimer, BMI, past medical history, chemotherapy, catheter size, and limb selection were independent risk factors for PICC-catheter related thrombosis. The AUC of Caprini score alone was 0.714; that of D-dimer alone 0.636, and that of the combined 0.876 (95%CI: 0.840~0.906). Visualization processing showed that the joint prediction model had a high degree of differentiation, and the Brier score and correction curve both showed a good calibration degree. H-L inspection (χ2=3.505,P>0.05) showed good fitting of the model. Conclusion The visualization model of PICC-catheter related thrombosis constructed by Caprini score combined with D-dimer can effectively predict the early risk of PICC-catheter related thrombosis, and provide reference for clinical treatment.

Key words: peripherally inserted central catheter, PICC-catheter related thrombosis, Caprini score, D-dimer, visualization model

中图分类号: 

  • R473
[1] 周纪云,王爱红,卢菲等.血液系统恶性肿瘤病人PICC相关性血栓风险预测模型的构建[J].护理研究, 2022,36(10):1758-1763.DOI:10.12102/j.issn.1009-6493.2022.10.011.
[2] 田旭,陈慧,宋国敏,等.基于Meta分析的肿瘤患者经外周置入中心静脉导管相关性静脉血栓形成风险预测模型构建[J].临床与病理杂志, 2017, 37(4):772-778.DOI:10.3978/j.issn.2095-6959.2017.04.021.
[3] 李乾,赵欣,张晓维等.国内成人肿瘤患者PICC相关性血栓发生率的Meta分析[J].中华护理杂志, 2022,57(3):348-355.DOI:10.3761/j.issn.0254-1769.2022.03.016.
[4] 陈江琼,闫常帅,张杰,等.PICC相关性上肢静脉栓血风险评估模型的构建与评价[J].护理学杂志,2018,33(7):1-5.DOI:10.3870/j.issn.1001-4152.2018.17.001.
[5] 刘芬,郭豫涛,徐月,等.老年住院患者PICC相关深静脉血栓风险评估模型研究[J].中国护理管理,2017,17(4):462-466.DOI:10.3969/j.issn.1672-1756.2017.04.007.
[6] Seeley MA, Santiago M, Shott S.Prediction tool for thrombi associated with peripherally inserted central catheters[J]. J Infus Nurs,2007,30(5):280-286.DOI:10.1097/01.NAN.0000292570.62763.3f.
[7] Chopra V, Kaatz S, Conlon A, et al.The Michigan Risk Score to predict peripherally inserted central catheter-associated thrombosis[J]. J Thromb Haemost,2017,15(10):1951-1962.DOI:10.1111/jth.13794.
[8] 王蕾,魏亚楠,杨玉山,等.髋部骨折术后患者血液凝血四项、D-二聚体水平与感染及血栓发生的关系[J].分子诊断与治疗杂志, 2022, 14(2):253-257.DOI:10.3969/j.issn.1674-6929.2022.02.019.
[9] 张文丽,周鸿晨,宗朋,等.D-二聚体和肌钙蛋白I在急性心肌梗死与主动脉夹层早期鉴别中的应用[J].标记免疫分析与临床,2021,28(11):1874-1877.DOI:10.11748/bjmy.issn.1006-1703.2021.11.014.
[10] Al-Asadi O, Almusarhed M, Eldeeb H.Predictive risk factors of venous thromboembolism (VTE) associated with peripherally inserted central catheters (PICC) in ambulant solid cancer patients: retrospective single Centre cohort study[J]. Thromb J,2019,17(2):1-7.DOI: 10.1186/s12959-019-0191-y.
[11] Li X, Wang G, Yan K, et al.The incidence, risk factors, and patterns of peripherally inserted central catheter-related venous thrombosis in cancer patients followed up by ultrasound[J]. Cancer Manag Res, 2021,13:4329-4340.DOI: 10.2147/CMAR.S301458.
[12] 冯月,李俊英.PICC相关性静脉血栓风险评估工具在肿瘤患者中应用的有效性研究[J].中国护理管理,2020,20(8):1258-1262.DOI:10.3969/j.issn.1672-1756.2020.08.030.
[13] Golemi I, Adum J P S, Tafur A, et al. Venous thromboembolism prophylaxis using the Caprini score[J]. Dis Mon,2019,65(8):249-298.DOI:10.1016/j.disamonth.2018.12.004.
[14] 唐文娟,石贞仙,张彩云,等.脑卒中患者发生深静脉血栓危险因素的Meta分析[J].中华护理杂志,2019,54(7):989-994. DOI:10.3761/j.issn.0254-1769.2019.07.006.
[15] Chopard R, Albertsen IE, Piazza G.Diagnosis and Treatment of lower extremity venous thromboembolism: a review[J]. JAMA,2020, 324(17):1765-1776.DOI:10.1001/jama.2020.17272.
[16] 0samah A Manar A, Hany E. Predictive risk factors of venous thromboembolism (VTE)associated with peripherally inserted central catheters (PICC) in ambulant solid cancer patients:retrospective single centre cohort study[J].Thromb J,2019,17(1):2.DOI:10.1186/s12959-019-0191-y.
[17] 王国栋,沈艳芬,董静,等.恶性肿瘤病人发生PICC相关性血栓的相关因素研究[J].肠外与肠内营养, 2019,26(6):331-336. DOI:10.16151/j.1007-810x.2019.06.004.
[18] 陈志波,陈钦昌,李勇辉,等.身体质量指数与深静脉血栓形成因果关系的孟德尔随机化研究[J].中华血管外科杂志,2019,4(4):247-251.DOI:10.3760/cma.j.issn.2096-1863.2019.04.011.
[19] 裘成莉,潘巧玲,徐国栋,等.食管癌化疗患者置入中心静脉导管相关性血栓的危险因素分析[J].中华全科医学,2018,16(9):1566-1569.DOI:10.16766/j.cnki.issn.1674-4152.000426.
[20] 田婷,黄锐娜,戚熠,等.肿瘤患者PICC置管相关静脉血栓形成危险因素Meta分析[J].护理学报,2019,26(11):49-54. DOI:10.16460/j.issn1008-9969.2019.11.049.
[21] 袁会军,钱才,黄燕.高血压与下肢深静脉血栓形成的相关性研究[J].血栓与止血学,2017,23(5):804-806. DOI:10.3969/j.issn.1009-6213.2017.05.027.
[22] Dadashzadeh ER, Bou-Samra P, Huckaby LV,et al.Leveraging decision curve analysis to improve clinical application of surgical risk calculators[J]. J Surg Res, 2021,261:58-66.DOI:10.1016/j.jss.2020.11.059.
[23] 朱薇,应燕萍,黄惠桥,等.三种评分表预测PICC相关上肢深静脉血栓效果比较研究[J].护理学杂志, 2018,33(7):54-56. DOI:10.3870/j.issn.1001-4152.2018.07.054.
[1] 邓瑛瑛, 裴华清, 文梅, 殷春梅, 张小玲. 神经外科重症患者PICC相关性血栓物理预防的最佳证据总结[J]. 护理学报, 2021, 28(8): 28-32.
[2] 裴一洁, 党娟, 凌继祖, 杨学梅. 1例新生儿下肢PICC致腰背部脓肿的原因分析与预防对策[J]. 护理学报, 2019, 26(13): 69-71.
[3] 张亚,李琳,孟嘉,刘云,张成欢,李倩倩,赵泽华,马娜. 骨科大手术术前Autar评分联合D-二聚体值在深静脉血栓形成风险评估中的应用研究[J]. 护理学报, 2018, 25(5): 12-14.
[4] 倪婷婷,何倩颖. 肿瘤患者PICC相关性血栓发生的危险因素及预防研究进展[J]. 护理学报, 2017, 24(15): 44-47.
[5] 阮淑琴,吕俊英,罗荣眉,林小清. 4例PICC置管致新生儿胸腔积液的护理[J]. 护理学报, 2014, (10): 62-63.
[6] 高云,赵洁,柴燕燕,赵芳,姚嘉丽,曹建琼,曾小平,李红梅. 经PICC与经CVC测量中心静脉压值的一致性分析[J]. 护理学报, 2013, (8): 9-11.
Viewed
Full text


Abstract

Cited

  Shared   
[1] 张侍玉, 王玉然, 赵姝姝, 王杰敏. 头颈癌放疗患者重度放射性口腔黏膜炎风险预测模型的构建与验证[J]. 护理学报, 2023, 30(10): 68 -72 .
[2] 张咪, 吴艳妮, 黄秀娥, 杨晶, 王润, 杨玲莉, 赵慧慧, 周春兰. 失能老人和配偶照顾者健康素养与自我效能对生活质量的交互作用[J]. 护理学报, 2023, 30(13): 1 -5 .
[3] 孙梦晨, 冯芳茗, 何佳倩, 范思雨, 杨颖, 季佳妮. 癌症患者自杀风险评估量表的编制及信效度检验[J]. 护理学报, 2023, 30(13): 13 -17 .
[4] 乔悦, 段培蓓, 王晓庆, 杨丽华, 邹炎铃, 费超男. 173例晚期癌症患者家庭回避癌症沟通现状及影响因素分析[J]. 护理学报, 2023, 30(13): 18 -23 .
[5] 黄宇星, 刘宁, 黄婷. 基于核心能力构建适宜中低资源地区护理本科循证实践教学指标体系[J]. 护理学报, 2023, 30(13): 24 -28 .
[6] 刘莉, 朋彩虹, 刘静. 双导师指导下的分学期递进式培养模式对护理专升本学生科研能力的影响[J]. 护理学报, 2023, 30(13): 29 -33 .
[7] 牛瑞, 宋晓东, 柴丹, 曹俊, 杨西宁. 医务人员卫生保健相关后悔的现状及应对策略研究[J]. 护理学报, 2023, 30(13): 34 -37 .
[8] 张颖, 刘雪琴, 刘晓辉, 聂亚杰, 章晓菲, 赵洁, 代楠, 王肖阳. 血液透析疲乏患者报告结局评估工具临床应用的研究进展[J]. 护理学报, 2023, 30(13): 38 -41 .
[9] 叶琴, 周立霞, 刘宁. 精准医学背景下母方案设计临床应用的范围综述[J]. 护理学报, 2023, 30(13): 42 -46 .
[10] 庄云婷, 王志坚, 李娟华, 肖燕璇, 刘益君. 妊娠期妇女不宁腿综合征管理的最佳证据总结[J]. 护理学报, 2023, 30(13): 47 -52 .