以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (19): 65-72.doi: 10.16460/j.issn1008-9969.2024.19.065

Previous Articles     Next Articles

Construction and validation of nomogram predictive model for risk of hypothermia in patients undergoing continuous renal replacement therapy

JIANG Ning-ning   

  1. Dept. of Emergency, Hangzhou First People's Hospital, Hangzhou 310000, China
  • Received:2024-05-07 Online:2024-10-10 Published:2024-11-07

Abstract: Objective To construct a nomogram prediction model of the risk of developing hypothermia in patients undergoing continuous renal replacement therapy and validate the model. Methods A retrospective study was conducted, and 450 patients undergoing consecutive renal replacement therapy in a tertiary grade-A hospital in Zhejiang Province from January 2019 to December 2022 were selected by convenience sampling and they were divided into hypothermia group (n=140) and non-hypothermia group (n=310) according to the occurrence of hypothermia or not. One-way analysis of variance and logistic regression analysis were used to analyze the risk factors, construct risk prediction model, and plot a nomogram. A prospective cohort study was used to collect 120 patients undergoing consecutive renal replacement therapy in the intensive care unit of a tertiary grade-A hospital from January to September 2023 as an external validation set to externally validate the model. Results The risk prediction model was constructed by multifactorial analysis incorporating baseline body temperature (OR=0.092), APACHE-II score (OR=2.499), whether or not mechanical ventilation (OR=2.578), and duration of continuous renal replacement therapy (OR=3.483). The areas under the ROC curves of the training and validation set were 0.856 and 0.819, respectively; Bootstrap internal validation of the mean absolute error between the actual and predicted value of its calibration curves was 0.027; Hoer-Lemeshow test of P=0.063 (P>0.05) indicated high goodness of fit of the model; The calibration curve and the decision curve showed that the model had the calibration degree and clinical usefulness. Conclusion The nomogram risk prediction model constructed in this study has the differentiation, calibration and clinical practicability, and can effectively predict the risk of hypothermia in patients undergoing continuous renal replacement therapy.

Key words: continuous renal replacement therapy, hypothermia, risk factor, predictive model, nomogram

CLC Number: 

  • R473.5
[1] 伍姣. 危重患者连续性肾脏替代治疗相关性低体温的研究进展[J].中华急危重症护理杂志,2020,1(2):182-185.DOI:10.3761/j.issn.2096-7446.2020.02.020.
[2] 杨从山,杨毅,黄力维,等.重症医学科连续性肾脏替代治疗应用现况调查分析[J].中华医学杂志, 2016, 96(39):3151-3155.DOI:10.3760/cma.j.issn.0376-2491.2016.39.008.
[3] Bell M, Ronco C, Hansson F,et al.Hypothermia during CRRT, a comparative analysis[J]. Acta Anaesthesiol Scand,2020,64(8):1162-1166.DOI:10.1111/aas.13616.
[4] 仇丽华, 赵振华, 冯波, 等. ICU患者连续性肾脏替代治疗24 h内低体温研究[J]. 护理学杂志, 2021, 36(10):26-29.DOI:10.3870/j.issn.1001-4152.2021.10.026.
[5] Bianchi NA, Altarelli M, Eckert P,et al.Complications of regional citrate anticoagulation for continuous renal replacement therapy: an observational study[J]. Blood Purif, 2020, 49(5):1-9.DOI:10.1159/000506253.
[6] Shimaoka H, Shiina T, Suzuki H,et al.Successful induction of deep hypothermia by isoflurane anesthesia and cooling in a non-hibernator, the rat[J]. J Physiol Sci, 2021, 71(1):10.DOI:10.1186/s12576-021-00794-1.
[7] Yagi N, Leblanc M, Sakai K,et al.Cooling effect of continuous renal replacement therapy in critically ill patients[J]. Am J Kidney Dis,1998,32(6):1023-1030.DOI:10.1016/S0272-6386(98)70078-2.
[8] Zhang K, Li TX, Wang ZL,et al.Factors affecting in-stent restenosis after angioplasty with the enterprise stent for intracranial atherosclerotic diseases[J]. Sci Rep, 2021, 11(1): 10479.DOI:10.1038/s41598-021-89670-x.
[9] 付菲,彭映辉,徐肇元,等.急性心肌梗死患者心力衰竭风险预测模型研究[J].中国心血管杂志, 2021, 26(6):525-530.DOI:10.3969/j.issn.1007-5410.2021.06.006.
[10] Mutchmore A, Lamontagne F, Chassé M, et al.Automated APACHE II and SOFA score calculation using real-world electronic medical record data in a single center[J]. J Clin Monit Comput,2023, 37(4):1023-1033.DOI:10.1007/s10877-023-01010-8.
[11] Akhoundi A, Singh B, Vela M,et al.Incidence of adverse events during continuous renal replacement therapy[J].Blood Purif, 2015, 39(4):333-339.DOI:10.1159/000380903.
[12] 高丽娟,李星,鲁玫.连续性肾脏替代治疗患者低体温的影响因素分析[J].实用临床护理学电子杂志, 2018, 3(24):173-176.DOI:10.3969/j.issn.2096-2479.2018.24.141.
[13] Gautam SC, Lim J, Jaar BG.Complications associated with continuous RRT[J]. Kidney360, 2022, 3(11):1980-1990. DOI:10.34067/KID.0000792022.
[14] Olivero JJ.Continuous venous-venous-hemodialysis versus intermittent-hemodialysis in critically ill patients[J]. Methodist Debakey Cardiovasc J,2018,14(2):153-155. DOI:10.14797/mdcj-14-2-153.
[15] 王好, 郑凌, 吕桂兰. 连续性血液净化治疗中低体温发生的临床护理进展[J]. 医学研究生学报, 2015, 28(12): 1333-1336.DOI:10.16571/j.cnki.1008-8199.2015.12.022.
[16] 杨娟娟, 易永红. 儿童连续性血液净化治疗中低体温的研究进展[J]. 护士进修杂志, 2020, 35(4):334-337.
[17] 李玉琼, 马敬香, 刘润梅. 危重症患儿血液净化治疗的并发症及护理[J]. 广州医药, 2011, 42(4):70-72.DOI:10.3969/j.issn.1000-8535.2011.04.032.
[18] Sadan O.Therapeutic hypothermia in critically ill patients: the role of hypothermia in the critical care toolbox[J].Crit Care Med, 2020,48(7):1089-1090.DOI:10.1097/CCM.0000000000004389.
[19] 秦晓渝,李军文.温热机和预温液体预防剖宫产术中低体温的效果对比[J].现代临床医学,2016, 42(6):453-455.DOI:10.11851/j.issn.1673-1557.2016.06.019.
[20] Rickard CM, Couchman BA, Hughes M, et al.Preventing hypothermia during continuous veno-venous haemodiafiltration: a randomized controlled trial[J]. J Adv Nurs,2004,47(4):393-400.DOI:10.1111/j.1365-2648.2004.03117.x.
[21] Kaur G, Banoth P, Yerram P, et al.A case of hypothermia on CRRT[J]. Hemodial Int,2017,21(2):S57-S61. DOI:10.1111/hdi.12601.
[22] 古春梅. CRRT治疗过程中患者的体温监测及护理[J].中国医药指南,2013, 11(35):228-230.DOI:10.15912/j.cnki.gocm.2013.35.154.
[23] 汪诚, 朱小平. 人工鼻与热加湿器对机械通气患者影响的Meta分析[J]. 护理学杂志, 2017, 32(7):88-92.DOI:10.3870/j.issn.1001-4152.2017.07.088.
[24] Paal P, Pasquier M, Darocha T, et al.Accidental hypothermia: 2021 update[J].Int J Environ Res Public Health,2022,19(1):501.DOI:10.3390/ijerph19010501.
[25] 董梦晴. 危重病人精准体温监测的研究进展[J].实用临床护理学电子杂志, 2019, 4(47):182-183.
[26] 柯稳,高兴莲,余文静,等.基于三维质量结构模型构建围手术期低体温预防护理质量指标体系[J].护理学报,2024,31(1):1-6.DOI:10.16460/j.issn1008-9969.2024.01.001.
[27] 涂加园,李琳,刘云,等.创伤后患者低体温的评估工具及影响因素研究进展[J].护理学报, 2018, 25(13):5.DOI:10.16460/j.issn1008-9969.2018.13.037.
[1] CAO Juan, LI Fang, YU Yue, DAI Li, YANG Dan-dan, LI Zhi-hua, XU Xin-yi, DAI Qi, CHEN Ke-yu. Construction and verification of risk prediction model for venous thromboembolism after esophageal cancer surgery [J]. Journal of Nursing, 2024, 31(8): 63-68.
[2] YANG Jian-guo, HE Xi-fei, YAN Jian-jun, ZHANG Meng, YANG Chun-zi, XU Rong, WANG Yan-fang. Best evidence summary for application and management of regional citrate anticoagulation in continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(4): 48-53.
[3] ZOU Zhao-hua, QINGN Wei, ZHU Mao-cai, ZHANG Ji-quan, YI Zi-han, HU Xiu. Construction of nursing quality-sensitive indicator system for continuous renal replacement therapy [J]. Journal of Nursing, 2024, 31(2): 70-74.
[4] OUYANG Die, XU Dou-dou, SUN Yan-rong, CHEN Ying, LV An-kang, WU Bei-wen. Construction of prediction model of non-alcoholic fatty liver disease in non-obese population based on lifestyle-related indicators [J]. Journal of Nursing, 2024, 31(10): 1-7.
[5] KE Wen, GAO Xing-lian, YU Wen-jing, FANG Min, WANG Zeng-yan. Construction of nursing quality evaluation index system for prevention of perioperative hypothermia based on Structure-process-outcome model [J]. Journal of Nursing, 2024, 31(1): 1-6.
[6] SUN Fei, LIU Min, HU Shan-shan, WU Lei, LIU Jun, LI Ping. Construction of prediction scoring model for lactation risk of mothers experiencing premature birth: a Meta-analysis [J]. Journal of Nursing, 2023, 30(23): 1-5.
[7] YANG Nan-nan, JIANG Hui-ping, SHI Ting-qi. Machine learning-based a risk predictive model for deep vein thrombosis in hospitalized patients: a systematic review [J]. Journal of Nursing, 2023, 30(23): 44-49.
[8] FANG Min, GAO Xing-lian, KE Wen, WANG Ceng-yan, LIANG Yuan-yuan. Establishment of risk prediction model for intraoperative hypothermia in patients undergoing abdominal surgery of digestive system and its validation [J]. Journal of Nursing, 2023, 30(20): 58-62.
[9] LIU Xue-qin, LIU Xiao-hui, PING Zhi-guang. Construction and validation of risk prediction model and online calculator for malnutrition in maintenance hemodialysis patients [J]. Journal of Nursing, 2023, 30(16): 12-18.
[10] PENG Ren-mei, QIAN Rong, LI Ya-jun, DUAN Huan, CHEN Lian-fang, LIU Yu-wen. Construction and validation of nomogram to predict sleep disorder risk in patients transferred from ICU [J]. Journal of Nursing, 2023, 30(15): 16-22.
[11] ZHANG Xiao-lan, SU Xiao-hua, ZHANG Jing. Construction of risk prediction model for cognitive dysfunction in pregnant women with cesarean section [J]. Journal of Nursing, 2023, 30(12): 73-78.
[12] ZHANG Cheng-jie, JING Kun-juan, LIU Dong-xue. Efficacy comparison of nomogram and classification and regression tree in predicting stigma in elderly stroke patients [J]. Journal of Nursing, 2023, 30(11): 7-12.
[13] HUANG Wen-hui, LIU Ying, DU Yang, ZHAN Cheng. Care of one critically ill infant with meconium aspiration syndrome treated with ECMO combined with CRRT and NO [J]. Journal of Nursing, 2023, 30(11): 71-73.
[14] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
[15] LUO Yu-qin, LI Meng-xuan, CHENG Qiu, WANG Ting, ZHENG Jing-yu, FANG Jin-bo, GONG Yu-ping. Case-control Study on Risk Factors of Perianal Infection in Patients with Hematological Malignancy undergoing Chemotherapy [J]. Journal of Nursing, 2022, 29(7): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
[1] . [J]. Journal of Nursing, 2024, 31(16): 50 -55 .
[2] . [J]. Journal of Nursing, 2024, 31(18): 12 -15 .
[3] HU Xing-juan, ZHANG Lun, GAO Yu-lin, GAO Chun-feng, CHEN Miao-yan, LI Xiao-jun, CHEN Xi-lin, HONG Du-yun, LIANG Ye-ji. Effect of generative artificial intelligence assisted blended teaching in teaching of infection prevention with intradermal needle for intern nursing students[J]. Journal of Nursing, 2024, 31(18): 21 -25 .
[4] . [J]. Journal of Nursing, 2024, 31(18): 26 -29 .
[5] . [J]. Journal of Nursing, 2024, 31(18): 30 -34 .
[6] SHI Chen, YAN Ze-lin, MA Jia-jun, LI Xin-xu, OU Chun-quan. Missing data in patient-reported outcomes in clinical studies and its solutions[J]. Journal of Nursing, 2024, 31(18): 35 -38 .
[7] CAO Chun-ju, WANG Wen, HUANG Mei-ying, HAN Bing, ZENG Mei, LUO Wen-jie, ZHANG Xiao-qin, HUANG Wei-ling, LI Wen-ying, SU Yun-tao, TANG Su-juan. Best evidence summary for management of pruritus in patients with cholestasis[J]. Journal of Nursing, 2024, 31(18): 39 -44 .
[8] YAO Yao, ZHANG Min, CHEN Yan, WANG Chun. Implementation difficulties of “Internet +” disability care service from perspective of user experience[J]. Journal of Nursing, 2024, 31(19): 1 -7 .
[9] LU Zhen-tao, SHI Fu-xia, WANG Yu-hui, GUO Jing. Clinical application rules of auricular point sticking for cancer-induced fatigue based on data mining[J]. Journal of Nursing, 2024, 31(19): 8 -11 .
[10] HAO Yang, QIN Yan-mei, MAO Mei-qi, ZHAO Ya-ning, LIU Yao, HAN Ying. Influencing factors of cognitive frailty in community-dwelling elderly individuals based on Bayesian network model[J]. Journal of Nursing, 2024, 31(19): 12 -18 .