以质量求发展,以服务铸品牌

Journal of Nursing ›› 2024, Vol. 31 ›› Issue (6): 56-61.doi: 10.16460/j.issn1008-9969.2024.06.056

Previous Articles     Next Articles

Prediction models for risk of acquired weakness in mechanically ventilated patients: a systematic review

ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng   

  1. School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
  • Received:2024-01-15 Online:2024-03-25 Published:2024-04-08

Abstract: Objective To conduct a systematic evaluation of prediction models for the risk of acquired weakness in mechanically ventilated patients. Methods We retrieved literature on prediction models for the risk of acquired weakness in mechanically ventilated patients in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang, and VIP. The retrieval period spanned from the inception of the databases to December 2023. Two researchers independently screened the literature, extracted data, and assessed the bias risk and applicability of the included studies. Results Sixteen articles were included. The area under the receiver operating characteristic curve for the included models ranged from 0.710 to 0.926. Bias risk assessment showed high bias risk in all models, but good applicability. The top 5 predictive factors in terms of frequency were mechanical ventilation time, age, Acute Physiology and Chronic Health Evaluation II score, blood lactate level, and multi-organ dysfunction. The combined AUC value of the six validation models was 0.800 (95%CI: 0.740-0.850), indicating good discrimination. Conclusion Prediction models for the risk of acquired weakness in mechanically ventilated patients demonstrate overall good predictive performance, but further optimization is needed in terms of data sources, design, and statistical analysis. Future efforts should focus on external validation of existing models or the development of high-quality predictive models.

Key words: mechanical ventilation, acquired weakness, intensive care unit, risk prediction model, systematic review

CLC Number: 

  • R473.56
[1] Pu L,Zhu B,Jiang L,et al.Weaning critically ill patients from mechanical ventilation: a prospective cohort study[J]. J Crit Care,2015,30(4):862-867.DOI: 10.1016/j.jcrc.2015.04.001.
[2] Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness[J]. Crit Care,2015,19(1):274. DOI:10.1186/s13054-015-0993-7.
[3] Stevens RD, Marshall SA, Cornblath DR,et al.A framework for diagnosing and classifying intensive care unit-acquired weakness[J]. Crit Care Med,2009,37(10 Suppl):S299-S308.DOI: 10.1097/CCM.0b013e3181b6ef67.
[4] Farhan H, Moreno-Duarte I, Latronico N, et al.Acquired muscle weakness in the surgical intensive care unit: nosology, epidemiology, diagnosis, and prevention[J]. Anesthesiology,2016,124(1):207-234.DOI:10.1097/ALN.0000000000000874.
[5] 鲁小丹,卫建华,沈建通,等. 预测模型系统评价的制作方法与步骤[J]. 中国循证医学杂志,2023,23(5):602-609. DOI:10.7507/1672-2531.202212112.
[6] Moons KG, de Groot JA, Bouwmeester W,et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med,2014,11(10):e1001744. DOI:10.1371/journal.pmed.1001744.
[7] 陈香萍,张奕,庄一渝,等. PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志, 2020,20(6):737-744. DOI:10.7057/1672-2351.201910087.
[8] Ioannidis JP.Interpretation of tests of heterogeneity and bias in meta-analysis[J]. J Eval Clin Pract,2008,14(5): 951-957.DOI: 10.1111/j.1365-2753.2008.00986.x.
[9] Wu Z, Lai J, Huang Q,et al.Machine learning-based model for predicting inpatient mortality in adults with traumatic brain injury: a systematic review and Meta-analysis[J]. Front Neurosci,2023(17):1285904.DOI:10.3389/fnins.2023.1285904.
[10] Egger M,Davey SG,Schneider M,et al.Bias in Meta-analysis detected by a simple, graphical test[J]. BMJ,1997,315(7109):629-634.DOI:10.1136/bmj.315.7109.629.
[11] 吴永花,袁善斌. ICU获得性肌无力的影响因素分析及风险预测模型的构建[J]. 全科护理,2023,21(29):4077-4080. DOI:10.12104/j.issn.1674-4748.2023.29.010.
[12] 赵昆,李璇,王一,等. 超声联合低频重复电刺激在老年ICU机械通气患者获得性肌无力中的预测价值[J]. 河北医药,2023,45(7):1031-1034.DOI:10.3969/j.issn.1002-7386.2023.07.015.
[13] 卓冰华,林枝珠,黄海娟,等. 预测ICU获得性衰弱风险的列线图模型的建立和验证[J].中国医学创新,2022,19(27): 166-170. DOI:10.3969/j.issn.1674-4985.2022.27.040.
[14] 王凌燕,吕慧,沈玉华,等. ICU获得性衰弱风险预测模型的构建及验证[J].中华危重病急救医学,2021,33(12): 1491-1496. DOI:10.3760/cma.j.cn121430-20210513-00707.
[15] 张晓旭,王悦,张柄涵,等. 个体化预测重症监护室获得性衰弱的风险列线图模型的建立[J]. 南昌大学学报(医学版), 2021,61(6):46-50.DOI:10.13764/j.cnki.ncdm.2021.06.009.
[16] 江竹月,邹圣强,胡佳民,等. 综合ICU患者获得性衰弱风险预测模型的构建与应用[J]. 中国实用护理杂志,2021,37(11):807-812. DOI:10.3760/cma.j.cn211501-20200809-03496.
[17] 武宁,李乐之,张红梅. 心血管外科术后患者ICU获得性衰弱的影响因素及风险预测[J]. 护士进修杂志,2021,36(19):1813-1819. DOI:10.16821/j.cnki.hsjx.2021.19.017.
[18] Witteveen E,Wieske L,Sommers J,et al.Early prediction of intensive care unit-acquired weakness: a multicenter external validation study[J]. J Intensive Care Med,2020,35(6): 595-605. DOI:10.1177/0885066618771001.
[19] Wolfe KS,Patel BK,Mackenzie EL,et al.Impact of vasoactive medications on ICU-acquired weakness in mechanically ventilated patients[J]. Chest,2018,154(4):781-787. DOI:10.1016/j.chest.2018.07.016.
[20] Hernández-Socorro CR, Saavedra P,Lopez-Fernandez JC,et al.Assessment of muscle wasting in long-stay ICU patients using a new ultrasound protocol[J]. Nutrients,2018,10(12):1849. DOI:10.3390/nu10121849.
[21] Diaz Ballve LP, Dargains N, Urrutia Inchaustegui JG,et al.Debilidad adquirida en la unidad de cuidados intensivos. Incidencia, factores de riesgo y su asociación con la debilidad inspiratoria. Estudio de cohorte observacional[J]. Rev Bras Ter Intensiva,2017,29(4):466-475.DOI:10.5935/0103-507X.20170063.
[22] 刘慧佳. 重症病房机械通气患者ICU获得性衰弱影响因素的研究[D]. 湖州:湖州师范学院,2017.
[23] Peñuelas O, Muriel A, Frutos-Vivar F,et al.Prediction and outcome of intensive care unit-acquired paresis[J]. J Intensive Care Med,2018,33(1):16-28.DOI:10.1177/0885066616643529.
[24] Wieske L,Witteveen E,Verhamme C,et al.Early prediction of intensive care unit-acquired weakness using easily available parameters: a prospective observational study[J]. PLoS One,2014,9(10):e111259. DOI:10.1371/journal.pone.0111259.
[25] De Jonghe B, Sharshar T, Lefaucheur JP,et al.Paresis acquired in the intensive care unit: a prospective multicenter study[J]. JAMA, 2002,288(22):2859-2867. DOI:10.1001/jama.288.22.2859.
[26] Garnacho-Montero J, Madrazo-Osuna J,García-Garmendia J,et al.Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients[J]. Intensive Care Med, 2001,27(8):1288-1296. DOI: 10.1007/s001340101009.
[27] Zhang W, Tang Y,Liu H,et al.Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: a systematic review[J]. PLoS One,2021,16(9): e257768.DOI: 10.1371/journal.pone.0257768.
[28] 刘杨,罗健,谢霖,等. ICU获得性衰弱风险预测模型的系统评价[J]. 中华现代护理杂志,2020,26(34):4769-4774.DOI: 10.3760/cma.j.cn115682-20200325-02174.
[29] 杨楠楠,蒋慧萍,史婷奇. 基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价[J]. 护理学报,2023,30(23):44-50.DOI:10.16460/j.issn1008-9969.2023.23.044.
[30] Wei XB, Wang ZH, Liao XL,et al.Role of neuromuscular blocking agents in acute respiratory distress syndrome: an updated Meta-analysis of randomized controlled trials[J].Front Pharmacol, 2020(10):1637. DOI: 10.3389/fphar.2019.01637.
[31] 李叶青,席修明,姜利,等. 机械通气患者ICU获得性肌无力危险因素分析[J]. 中华危重病急救医学,2019,31(11): 1351-1356.DOI:10.3760/cma.j.issn.2095-4352.2019.11.008.
[32] Godinjak A, Jusufovic S,Rama A,et al.Hyperlactatemia and the importance of repeated lactate measurements in critically ill patients[J]. Med Arch,2017,71(6):404-407. DOI:10.5455/medarh.2017.71.404-407.
[1] WU Lin-mei, LIANG Zhi-jin, LIU Rui-jie, ZHONG Jing-jing, QIU Yu-hua. Barriers to and facilitators of exercise rehabilitation in patients with COPD: a CFIR-based systematic review [J]. Journal of Nursing, 2024, 31(5): 44-49.
[2] ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12.
[3] JIANG Ya-qian, CHEN Zhao, XU Hai-yan, WU Qian-sheng, ZHOU Yan-rong. Effect and effective duration of prone ventilation in patients with acute respiratory distress [J]. Journal of Nursing, 2023, 30(9): 60-63.
[4] ZHU Ming-yue, DING Xiao-tong, SHI Ji-yuan, Li Zheng. Effects of self-perception of aging on cognitive function in elderly people: a systematic review [J]. Journal of Nursing, 2023, 30(8): 52-57.
[5] YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52.
[6] YANG Nan-nan, JIANG Hui-ping, SHI Ting-qi. Machine learning-based a risk predictive model for deep vein thrombosis in hospitalized patients: a systematic review [J]. Journal of Nursing, 2023, 30(23): 44-49.
[7] WEI Jia-hao, BU Meng-ru, BAI Zi-ye, ZHOU Jin. Measurement property of traditional Chinese medicine clinical effectiveness evaluation scales for lung cancer: a systematic review [J]. Journal of Nursing, 2023, 30(22): 56-62.
[8] WANG Yao, GUAN Yu-xiang, ZHENG Jing, XU Juan, WANG Chao. Systematic reviews of continuous glucose monitoring in patients with diabetes: an overview [J]. Journal of Nursing, 2023, 30(21): 39-45.
[9] ZHU Ming-yue, SHI Ji-yuan, LI Zheng. Effectiveness of computerized cognitive training for patients with cognitive dysfunction: an overview of systematic reviews [J]. Journal of Nursing, 2023, 30(21): 46-53.
[10] ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50.
[11] HOU Ya-tian, CHEN Si-nuo, LIU Meng-hui, ZHANG Bo-wen, AN Xiang, LIU Yun, XU Wen-qi, ZHANG Ming-yang. Best evidence summary for identification and prevention of silent aspiration in mechanically ventilated patients [J]. Journal of Nursing, 2023, 30(18): 36-41.
[12] YAN Wen-juan, LI Zhuang-miao, YU Meng-ting, LI Shi-en, CHI Yan-hong. Systematic Review of Influence Factors of Stigma in Stroke Patients [J]. Journal of Nursing, 2022, 29(8): 46-52.
[13] TANG Fan, LI Ya-ling, LUO Man-yue, WANG Zhao-bei, LI Zhang-shuangzi, CAI Peng. Best Evidence Summary for Endotracheal Suctioning in Neonates with Mechanical Ventilation [J]. Journal of Nursing, 2022, 29(24): 38-42.
[14] YAN Xue, LIU Qian-qian, WEI Si-qi. Qualitative Studies on Influencing Factors of Social Alienation in Gynecological Cancer Patients: A Meta-integration [J]. Journal of Nursing, 2022, 29(20): 39-43.
[15] HU Kai-li, YANG Si-yu, WU Qian-sheng, ZHOU Yan-rong. Construction of Risk Prediction Model for Prolonged Mechanical Ventilation in Patients after Cardiac Surgery [J]. Journal of Nursing, 2022, 29(20): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
[1] . [J]. JOURNAL OF NURSING, 2012, 19(1): 16 -19 .
[2] ZHANG Ji-hui,YAO Wen-ying,JIANG Shu-yi,TAN Ai-zhen,ZHANG Ai-lian. Effects of Extended-nursing on Quality of Sexual Life of Patients after Hysterectomy[J]. JOURNAL OF NURSING, 2012, 19(3): 45 -48 .
[3] . [J]. JOURNAL OF NURSING, 2012, 19(3): 54 -56 .
[4] . [J]. JOURNAL OF NURSING, 2012, 19(4): 68 -69 .
[5] . [J]. JOURNAL OF NURSING, 2012, 19(6): 73 -74 .
[6] . [J]. JOURNAL OF NURSING, 2012, 19(8): 67 -68 .
[7] CHEN Yuan,LI Ya-jie. Determination of Evaluation Indicator Weights of Clinical Competence for Students with Master of Nursing Specialist[J]. JOURNAL OF NURSING, 2012, 19(9): 13 -17 .
[8] FENG Wei,DAI Yong-jing,LU Gui-jun. Brachial Plexus Block in Rehabilitation Training for Patients with Elbow Fracture Operation[J]. JOURNAL OF NURSING, 2012, 19(11): 69 -70 .
[9] . [J]. JOURNAL OF NURSING, 2012, 19(12): 50 -51 .
[10] . [J]. JOURNAL OF NURSING, 2012, 19(13): 57 -59 .