Journal of Nursing ›› 2024, Vol. 31 ›› Issue (6): 56-61.doi: 10.16460/j.issn1008-9969.2024.06.056
Previous Articles Next Articles
ZHOU Yue, ZHANG Jie, PAN Yu-fan, DAI Yu, SUN Yu-jian, XIAO Yi, YU Yu-feng
CLC Number:
[1] Pu L,Zhu B,Jiang L,et al.Weaning critically ill patients from mechanical ventilation: a prospective cohort study[J]. J Crit Care,2015,30(4):862-867.DOI: 10.1016/j.jcrc.2015.04.001. [2] Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness[J]. Crit Care,2015,19(1):274. DOI:10.1186/s13054-015-0993-7. [3] Stevens RD, Marshall SA, Cornblath DR,et al.A framework for diagnosing and classifying intensive care unit-acquired weakness[J]. Crit Care Med,2009,37(10 Suppl):S299-S308.DOI: 10.1097/CCM.0b013e3181b6ef67. [4] Farhan H, Moreno-Duarte I, Latronico N, et al.Acquired muscle weakness in the surgical intensive care unit: nosology, epidemiology, diagnosis, and prevention[J]. Anesthesiology,2016,124(1):207-234.DOI:10.1097/ALN.0000000000000874. [5] 鲁小丹,卫建华,沈建通,等. 预测模型系统评价的制作方法与步骤[J]. 中国循证医学杂志,2023,23(5):602-609. DOI:10.7507/1672-2531.202212112. [6] Moons KG, de Groot JA, Bouwmeester W,et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med,2014,11(10):e1001744. DOI:10.1371/journal.pmed.1001744. [7] 陈香萍,张奕,庄一渝,等. PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志, 2020,20(6):737-744. DOI:10.7057/1672-2351.201910087. [8] Ioannidis JP.Interpretation of tests of heterogeneity and bias in meta-analysis[J]. J Eval Clin Pract,2008,14(5): 951-957.DOI: 10.1111/j.1365-2753.2008.00986.x. [9] Wu Z, Lai J, Huang Q,et al.Machine learning-based model for predicting inpatient mortality in adults with traumatic brain injury: a systematic review and Meta-analysis[J]. Front Neurosci,2023(17):1285904.DOI:10.3389/fnins.2023.1285904. [10] Egger M,Davey SG,Schneider M,et al.Bias in Meta-analysis detected by a simple, graphical test[J]. BMJ,1997,315(7109):629-634.DOI:10.1136/bmj.315.7109.629. [11] 吴永花,袁善斌. ICU获得性肌无力的影响因素分析及风险预测模型的构建[J]. 全科护理,2023,21(29):4077-4080. DOI:10.12104/j.issn.1674-4748.2023.29.010. [12] 赵昆,李璇,王一,等. 超声联合低频重复电刺激在老年ICU机械通气患者获得性肌无力中的预测价值[J]. 河北医药,2023,45(7):1031-1034.DOI:10.3969/j.issn.1002-7386.2023.07.015. [13] 卓冰华,林枝珠,黄海娟,等. 预测ICU获得性衰弱风险的列线图模型的建立和验证[J].中国医学创新,2022,19(27): 166-170. DOI:10.3969/j.issn.1674-4985.2022.27.040. [14] 王凌燕,吕慧,沈玉华,等. ICU获得性衰弱风险预测模型的构建及验证[J].中华危重病急救医学,2021,33(12): 1491-1496. DOI:10.3760/cma.j.cn121430-20210513-00707. [15] 张晓旭,王悦,张柄涵,等. 个体化预测重症监护室获得性衰弱的风险列线图模型的建立[J]. 南昌大学学报(医学版), 2021,61(6):46-50.DOI:10.13764/j.cnki.ncdm.2021.06.009. [16] 江竹月,邹圣强,胡佳民,等. 综合ICU患者获得性衰弱风险预测模型的构建与应用[J]. 中国实用护理杂志,2021,37(11):807-812. DOI:10.3760/cma.j.cn211501-20200809-03496. [17] 武宁,李乐之,张红梅. 心血管外科术后患者ICU获得性衰弱的影响因素及风险预测[J]. 护士进修杂志,2021,36(19):1813-1819. DOI:10.16821/j.cnki.hsjx.2021.19.017. [18] Witteveen E,Wieske L,Sommers J,et al.Early prediction of intensive care unit-acquired weakness: a multicenter external validation study[J]. J Intensive Care Med,2020,35(6): 595-605. DOI:10.1177/0885066618771001. [19] Wolfe KS,Patel BK,Mackenzie EL,et al.Impact of vasoactive medications on ICU-acquired weakness in mechanically ventilated patients[J]. Chest,2018,154(4):781-787. DOI:10.1016/j.chest.2018.07.016. [20] Hernández-Socorro CR, Saavedra P,Lopez-Fernandez JC,et al.Assessment of muscle wasting in long-stay ICU patients using a new ultrasound protocol[J]. Nutrients,2018,10(12):1849. DOI:10.3390/nu10121849. [21] Diaz Ballve LP, Dargains N, Urrutia Inchaustegui JG,et al.Debilidad adquirida en la unidad de cuidados intensivos. Incidencia, factores de riesgo y su asociación con la debilidad inspiratoria. Estudio de cohorte observacional[J]. Rev Bras Ter Intensiva,2017,29(4):466-475.DOI:10.5935/0103-507X.20170063. [22] 刘慧佳. 重症病房机械通气患者ICU获得性衰弱影响因素的研究[D]. 湖州:湖州师范学院,2017. [23] Peñuelas O, Muriel A, Frutos-Vivar F,et al.Prediction and outcome of intensive care unit-acquired paresis[J]. J Intensive Care Med,2018,33(1):16-28.DOI:10.1177/0885066616643529. [24] Wieske L,Witteveen E,Verhamme C,et al.Early prediction of intensive care unit-acquired weakness using easily available parameters: a prospective observational study[J]. PLoS One,2014,9(10):e111259. DOI:10.1371/journal.pone.0111259. [25] De Jonghe B, Sharshar T, Lefaucheur JP,et al.Paresis acquired in the intensive care unit: a prospective multicenter study[J]. JAMA, 2002,288(22):2859-2867. DOI:10.1001/jama.288.22.2859. [26] Garnacho-Montero J, Madrazo-Osuna J,García-Garmendia J,et al.Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients[J]. Intensive Care Med, 2001,27(8):1288-1296. DOI: 10.1007/s001340101009. [27] Zhang W, Tang Y,Liu H,et al.Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: a systematic review[J]. PLoS One,2021,16(9): e257768.DOI: 10.1371/journal.pone.0257768. [28] 刘杨,罗健,谢霖,等. ICU获得性衰弱风险预测模型的系统评价[J]. 中华现代护理杂志,2020,26(34):4769-4774.DOI: 10.3760/cma.j.cn115682-20200325-02174. [29] 杨楠楠,蒋慧萍,史婷奇. 基于机器学习构建住院患者深静脉血栓风险预测模型的系统评价[J]. 护理学报,2023,30(23):44-50.DOI:10.16460/j.issn1008-9969.2023.23.044. [30] Wei XB, Wang ZH, Liao XL,et al.Role of neuromuscular blocking agents in acute respiratory distress syndrome: an updated Meta-analysis of randomized controlled trials[J].Front Pharmacol, 2020(10):1637. DOI: 10.3389/fphar.2019.01637. [31] 李叶青,席修明,姜利,等. 机械通气患者ICU获得性肌无力危险因素分析[J]. 中华危重病急救医学,2019,31(11): 1351-1356.DOI:10.3760/cma.j.issn.2095-4352.2019.11.008. [32] Godinjak A, Jusufovic S,Rama A,et al.Hyperlactatemia and the importance of repeated lactate measurements in critically ill patients[J]. Med Arch,2017,71(6):404-407. DOI:10.5455/medarh.2017.71.404-407. |
[1] | WU Lin-mei, LIANG Zhi-jin, LIU Rui-jie, ZHONG Jing-jing, QIU Yu-hua. Barriers to and facilitators of exercise rehabilitation in patients with COPD: a CFIR-based systematic review [J]. Journal of Nursing, 2024, 31(5): 44-49. |
[2] | ZHOU Meng-juan, ZHU Xiao-li, ZHANG Tai, DUAN Jian-feng, LUO Yu-mei, MA Wei-li, LU Han, SHI Ting-ting, YANG Yi-lin, LI Ting, CHA Yao-lei, ZHAO Yuan. Construction and verification of predictive model for prolonged length of stay in patients with non-severe acute pancreatitis [J]. Journal of Nursing, 2023, 30(9): 7-12. |
[3] | JIANG Ya-qian, CHEN Zhao, XU Hai-yan, WU Qian-sheng, ZHOU Yan-rong. Effect and effective duration of prone ventilation in patients with acute respiratory distress [J]. Journal of Nursing, 2023, 30(9): 60-63. |
[4] | ZHU Ming-yue, DING Xiao-tong, SHI Ji-yuan, Li Zheng. Effects of self-perception of aging on cognitive function in elderly people: a systematic review [J]. Journal of Nursing, 2023, 30(8): 52-57. |
[5] | YE Lei, ZHANG Ai-qin, RONG Yun, XIA Guang-hui. Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review [J]. Journal of Nursing, 2023, 30(7): 48-52. |
[6] | YANG Nan-nan, JIANG Hui-ping, SHI Ting-qi. Machine learning-based a risk predictive model for deep vein thrombosis in hospitalized patients: a systematic review [J]. Journal of Nursing, 2023, 30(23): 44-49. |
[7] | WEI Jia-hao, BU Meng-ru, BAI Zi-ye, ZHOU Jin. Measurement property of traditional Chinese medicine clinical effectiveness evaluation scales for lung cancer: a systematic review [J]. Journal of Nursing, 2023, 30(22): 56-62. |
[8] | WANG Yao, GUAN Yu-xiang, ZHENG Jing, XU Juan, WANG Chao. Systematic reviews of continuous glucose monitoring in patients with diabetes: an overview [J]. Journal of Nursing, 2023, 30(21): 39-45. |
[9] | ZHU Ming-yue, SHI Ji-yuan, LI Zheng. Effectiveness of computerized cognitive training for patients with cognitive dysfunction: an overview of systematic reviews [J]. Journal of Nursing, 2023, 30(21): 46-53. |
[10] | ZHOU Fei-yang, DENG Lu, LONG Ke-yu, YANG Ting-ting, XIE Lin-lin, LV Qing, GUO Chun-bo. Risk prediction model for cognitive frailty in elderly: a systematic review [J]. Journal of Nursing, 2023, 30(19): 45-50. |
[11] | HOU Ya-tian, CHEN Si-nuo, LIU Meng-hui, ZHANG Bo-wen, AN Xiang, LIU Yun, XU Wen-qi, ZHANG Ming-yang. Best evidence summary for identification and prevention of silent aspiration in mechanically ventilated patients [J]. Journal of Nursing, 2023, 30(18): 36-41. |
[12] | YAN Wen-juan, LI Zhuang-miao, YU Meng-ting, LI Shi-en, CHI Yan-hong. Systematic Review of Influence Factors of Stigma in Stroke Patients [J]. Journal of Nursing, 2022, 29(8): 46-52. |
[13] | TANG Fan, LI Ya-ling, LUO Man-yue, WANG Zhao-bei, LI Zhang-shuangzi, CAI Peng. Best Evidence Summary for Endotracheal Suctioning in Neonates with Mechanical Ventilation [J]. Journal of Nursing, 2022, 29(24): 38-42. |
[14] | YAN Xue, LIU Qian-qian, WEI Si-qi. Qualitative Studies on Influencing Factors of Social Alienation in Gynecological Cancer Patients: A Meta-integration [J]. Journal of Nursing, 2022, 29(20): 39-43. |
[15] | HU Kai-li, YANG Si-yu, WU Qian-sheng, ZHOU Yan-rong. Construction of Risk Prediction Model for Prolonged Mechanical Ventilation in Patients after Cardiac Surgery [J]. Journal of Nursing, 2022, 29(20): 60-64. |
|