以质量求发展,以服务铸品牌

Journal of Nursing ›› 2021, Vol. 28 ›› Issue (7): 30-34.doi: 10.16460/j.issn1008-9969.2021.07.030

Previous Articles     Next Articles

  

  • Received:2021-08-31 Online:2021-04-10 Published:2021-05-12
[1] 中华人民共和国国务院. 国务院关于印发新一代人工智能发展规划的通知[EB/OL].[2017-07-20](2020-08-25).http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[2] Deo RC.Machine Learning in Medicine[J]. Circulation, 2015,132(20):1920-1930. DOI:10.1161/circulationaha.115.001593.
[3] DeGregory KW, Kuiper P, DeSilvio T, et al. A Review of Machine Learning in Obesity[J]. Obes Rev, 2018, 19(5):668-685. DOI:10.1111/obr.12667.
[4] Alanazi HO, Abdullah AH, Qureshi KN.A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care[J]. J Med Syst, 2017,41(4):69. DOI:10.1007/s10916-017-0715-6.
[5] Triantafyllidis A, Polychronidou E,Alexiadis A,et al.Computerized Decision Support and Machine Learning Applications for the Prevention and Treatment of Childhood Obesity: A Systematic Review of the Literature[J]. Artif Intell Med, 2020,104:101844.DOI:10.1016/j.artmed.2020.101844.
[6] Islam MM, Nasrin T, Walther BA,et al.Prediction of Sepsis Patients Using Machine Learning Approach: A Meta-analysis[J]. Comput Methods Programs Biomed, 2019,170:1-9. DOI:10.1016/j.cmpb.2018.12.027.
[7] Awan SE, Sohel F, Sanfilippo FM, et al.Machine Learning in Heart Failure: Ready for Prime Time[J]. Curr Opin Cardiol,2018,33(2):190-195.DOI:10.1097/HCO.0000000000000491.
[8] Lee A, Taylor P, Kalpathy-Cramer J, et al.Machine Learning Has Arrived![J]. Ophthalmology, 2017,124(12):1726-1728.DOI:10.1016/j.ophtha.2017.08.046.
[9] Lee S, Mohr NM, Street WN, et al.Machine Learning in Relation to Emergency Medicine Clinical and Operational Scenarios: An Overview[J]. West J Emerg Med, 2019,20(2):219-227. DOI:10.5811/westjem.2019.1.41244.
[10] 丁四清,陆晶,秦春香,等. 数据挖掘在护理不良事件管理中的应用进展[J]. 中华护理杂志, 2019,54(6):873-877.DOI:10.3761/j.issn.0254-1769.2019.06.013.
[11] Levin S, Toerper M, Hamrock E, et al.Machine-learning-Based Electronic Triage More Accurately Differentiates Patients with Respect to Clinical Outcomes Compared with the Emergency Severity Index[J]. Ann Emerg Med, 2018,71(5):565-574.DOI:10.1016/j.annemergmed.2017.08.005.
[12] 苗晓,马靓,徐萍,等. ICU获得性衰弱风险预测模型的研究进展[J]. 中国护理管理, 2019,19(1):146-150. DOI:10.3969/j.issn.1672-1756.2019.01.033.
[13] Barton C, Chettipally U, Zhou Y, et al.Evaluation of a Machine Learning Algorithm for Up to 48-hour Advance Prediction of Sepsis Using Six Vital Signs[J].Comput Biol Med, 2019,109:79-84. DOI:10.1016/j.compbiomed.2019.04.027.
[14] Mohamadlou H, Lynn-Palevsky A, Barton C, et al.Prediction of Acute Kidney Injury with a Machine Learning Algorithm Using Electronic Health Record Data[J]. Can J Kidney Health Dis,2018,5:2054358118776326.DOI:10.1177/2054358118776326.
[15] Wang Y, Lei L, Ji M, et al.Predicting Postoperative Delirium after Microvascular Decompression Surgery with Machine Learning[J]. J Clin Anesth, 2020,66:109896.DOI:10.1016/j.jclinane.2020.109896.
[16] Corradi JP, Thompson S, Mather JF, et al.Prediction of Incident Delirium Using a Random Forest Classifier[J]. J Med Syst,2018,42(12):261.DOI:10.1007/s10916-018-1109-0.
[17] Taylor RA, Moore CL, Cheung KH, et al.Predicting Urinary Tract Infections in the Emergency Department with Machine Learning[J]. PLoS One, 2018,13(3):e0194085. DOI:10.1371/journal.pone.0194085.
[18] Ong ME, Lee Ng CH, Goh K, et al.Prediction of Cardiac Arrest In Critically Ill Patients Presenting to the Emergency Department Using a Machine Learning Score Incorporating Heart Rate Variability Compared with the Modified Early Warning Score[J]. Crit Care, 2012, 16(3):R108.DOI:10.1186/cc11396.
[19] Frizzell JD, Liang L, Schulte PJ, et al.Prediction Of 30-Day All-cause Readmissions in Patients Hospitalized For Heart Failure: Comparison of Machine Learning and Other Statistical Approaches[J]. JAMA Cardiol, 2017,2(2):204-209. DOI:10.1001/jamacardio.2016.3956.
[20] Rojas JC, Carey KA, Edelson DP,et al, Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data[J]. Ann Am Thorac Soc, 2018, 15(7):846-853. DOI:10.1513/AnnalsATS.201710-787OC.
[21] 王振容,蒋晓莲. 数据挖掘在护理领域中的应用进展[J]. 中华护理杂志,2017,52(10):1262-1264.DOI:10.3761/j.issn.0254-1769.2017.10.022.
[22] 周丹,尹安春. 人工神经网络在护理领域的应用研究进展[J]. 护理学杂志,2020,35(3):94-97. DOI:10.3870/j.issn.1001-4152.2020.03.094.
[23] Linthicum KP, Schafer KM, Ribeiro JD.Machine Learning in Suicide Science: Applications and Ethics[J]. Behav Sci Law, 2019,37(3):214-222. DOI:10.1002/bsl.2392.
[24] Su D, Zhang X, He K, et al.Use Of Machine Learning Approach to Predict Depression in the Elderly in China: A Longitudinal Study[J]. J Affect Disord, 2020,282:289-298. DOI:10.1016/j.jad.2020.12.160.
[25] Fernandes M,Mendes R,Vieira SM,et al.Predicting Intensive Care Unit Admission Among Patients Presenting to the Emergency Department Using Machine Learning and Natural Language Processing[J]. PLoS One, 2020,15(3):e0229331. DOI:10.1371/journal.pone.0229331.
[26] Parker CA,Liu N,Wu SX, et al.Predicting Hospital Admission at the Emergency Department Triage: A Novel Prediction Model[J]. Am J Emerg Med, 2019,37(8):1498-1504. DOI:10.1016/j.ajem.2018.10.060.
[27] Gao Y, Cai GY, Fang W, et al.Machine Learning Based Early Warning System Enables Accurate Mortality Risk Prediction for Covid-19[J]. Nat Commun, 2020, 11(1):5033. DOI:10.1038/s41467-020-18684-2.
[28] Cheng FY, Joshi H,Tandon P,et al.Using Machine Learning to Predict ICU Transfer in Hospitalized Covid-19 Patients[J]. J Clin Med, 2020,9(6):1668.DOI:10.3390/jcm9061668.
[29] Vaid A, Somani S, Russak AJ, et al.Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients with Covid-19 in New York City: Model Development and Validation[J]. J Med Internet Res, 2020,22(11):e24018. DOI:10.2196/24018.
[30] World Health Organization. Hypertension[EB/OL].(2021-01-17). https://www.who.int/health-topics/hypertension/.
[31] Chang W, Liu Y, Xiao Y, et al.A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data[J]. Diagnostics (Basel), 2019,9(4):178. DOI:10.3390/diagnostics9040178.
[32] Weng SF, Reps J, Kai J, et al.Can Machine-Learning Improve Cardiovascular Risk Prediction Using Routine Clinical Data?[J]. PLoS One, 2017,12(4):e0174944. DOI:10.1371/journal.pone.0174944.
[33] Lee W, Lee J, Lee H, et al.Prediction of Hypertension Complications Risk Using Classification Techniques[J]. Ind Eng Manage,2014,13(4):449-453. DOI:10.7232/iems.2014.13.4.449.
[34] World Health Organization.Diabetes[EB/OL].(2021-01-17). https://www.who.int/health-topics/diabetes#tab=tab_1.
[35] Georga EI, Protopappas VC, Ardigo D, et al.A Glucose Model Based on Support Vector Regression for the Prediction of Hypoglycemic Events Under Free-living Conditions[J]. Diabetes Technol Ther, 2013, 15(8):634-643.DOI:10.1089/dia.2012.0285.
[36] Zeevi D, Korem T, Zmora N, et al.Personalized Nutrition by Prediction of Glycemic Responses[J]. Cell, 2015,163(5):1079-1094. DOI:10.1016/j.cell.2015.11.001.
[37] Zhu T, Li K, Herrero P, et al. Deep Learning for Diabetes: A Systematic Review[J]. IEEE J Biomed Health Inform, 2020,PP. DOI:10.1109/jbhi.2020.3040225.
[38] Dagliati A, Marini S, Sacchi L, et al.Machine Learning Methods to Predict Diabetes Complications[J]. J Diabetes Sci Technol,2018,12(2):295-302.DOI:10.1177/1932296817706375.
[39] Orchard P,Agakova A,Pinnock H,et al.Improving Prediction of Risk of Hospital Admission in Chronic Obstructive Pulmonary Disease: Application of Machine Learning to Telemonitoring Data[J]. J Med Internet Res, 2018,20(9):e263. DOI:10.2196/jmir.9227.
[40] Wang T, Qiu RG, Yu M.Predictive Modeling of the Progression of Alzheimer’s Disease with Recurrent Neural Networks[J]. Sci Rep, 2018, 8(1):9161. DOI:10.1038/s41598-018-27337-w.
[41] Shi HY, Tsai JT, Chen YM, et al.Predicting Two-year Quality of Life after Breast Cancer Surgery Using Artificial Neural Network and Linear Regression Models[J]. Breast Cancer Res Treat, 2012, 135(1):221-229. DOI:10.1007/s10549-012-2174-6.
[42] Bica I,Alaa AM,Lambert C, et al.From Real-world Patient Data to Individualized Treatment Effects Using Machine Learning: Current and Future Methods to Address Underlying Challenges[J]. Clin Pharmacol Ther, 2021,109(1):87-100. DOI:10.1002/cpt.1907.
[43] Choi E, Bahadori MT, Schuetz A,et al, Doctor AI: Predicting Clinical Events via Recurrent Neural Networks[J]. JMLR Workshop Conf Proc, 2016, 56:301-318.
[44] Tahmassebi AWG,Helbich TH.Impact of Machine Learning with Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients[J]. Invest Radiol, 2019,54(2):110-117. DOI:10.1097/RLI.0000000000000518.
[45] 赵飞,兰蓝,曹战强,等. 我国人工智能在健康医疗领域应用发展现状研究[J]. 中国卫生信息管理杂志,2018,15(3):344-349.DOI:10.3969/j.issn.1672-5166.2018.03.024.
[1] CHEN Jia, XIONG Wei, ZHANG Li-fang, ZHANG Chun. Effect of ECG-guided PICC Catheter Tip Positioning in 30° of Internal Rotation [J]. Journal of Nursing, 2021, 28(7): 69-73.
[2] . [J]. Journal of Nursing, 2021, 28(6): 13-16.
[3] GUO Han-hua, CHEN Ming-gui, KONG Li-li, ZHANG Xiao-xuan. Evidence-based Practice of Best Replacement of Catheter for Arterial Pressure Measuring of Critically-ill Patients [J]. Journal of Nursing, 2021, 28(2): 37-41.
[4] . [J]. Journal of Nursing, 2021, 28(1): 17-21.
[5] FENG Xu-lin, CHEN Xiao-xia, HAN Gai-yu, HUANG Jing, LU Chang-qing, TAN Ling-ling. Nursing of Patients with Coronary Artery Disease Undergoing Coronary Artery Bypass Grafting with Video-assisted Thoracoscopy: A 113-case Study [J]. Journal of Nursing, 2020, 27(24): 60-62.
[6] LI Hong-yun, WANG Hui, BIAN Shu-qin, LU Shuang, ZHANG Ji-zhi. Medical Failure Mode and Effect Analysis in Pediatric Intravenous Drug Admixture [J]. Journal of Nursing, 2020, 27(20): 12-16.
[7] WANG Hai-yan, WANG Li, ZHANG Chao-ting, SUN Zhu-hua, ZOU Dan-feng, LI Yu-mei, WU Hong-lun, ZHU Bi-li. Evidence Summary of Optimal Postural Management Strategy after Lumbar Anesthesia [J]. Journal of Nursing, 2020, 27(20): 32-37.
[8] TAN Feng, ZHOU Ping, SHI Jin-shuan, HE Qiao-fang. Application of Precise Posture Fixation Package in Endoscopy-assisted Modified Radical Mastectomy [J]. Journal of Nursing, 2020, 27(18): 76-78.
[9] . [J]. Journal of Nursing, 2020, 27(16): 49-51.
[10] LI Lan, LI Xian-wen, CAI Zhi-yun, HUANG Ling-long, HAN Qiu-ying. Effect of Inserting 20cm Midline Catheter into Superior Vena Cava in Children with Accidental Injury [J]. Journal of Nursing, 2020, 27(16): 52-55.
[11] XU Bin, HAN Jie, DONG Yao, ZHANG Hong-ying. Nursing Cooperation in Ozaki Technique for Aortic Valve Reconstruction: A 32-case Study [J]. Journal of Nursing, 2020, 27(15): 66-68.
[12] . [J]. Journal of Nursing, 2020, 27(8): 73-76.
[13] YU Hai-tao, SUN Lin, HAN Xiao-qin, LIU Yun. Comparison of Three Trauma Severity Scoring Systems in Predicting In-hospital Death in Elderly Trauma Patients [J]. Journal of Nursing, 2020, 27(8): 34-37.
[14] . [J]. Journal of Nursing, 2020, 27(8): 65-68.
[15] ZHANG Ming-yang, DU Li-baihe, LUO Xiao-ping, ZHANG Wen-jun, LIANG Ai-qun, CHANG Hou-chan. Summary of Best Evidence for Preoperative Pre-warming of Patients [J]. Journal of Nursing, 2020, 27(6): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
[1] DU Jin-lei, CHEN Zhi-mei, QIN Lan-fang, LIAN Jie, SUN Wen-jing, WANG Xiang, XU Wei, ZOU Xiao-yue. Development and Application of Extended Enteral Nutrition Management Scheme for Elderly ICU Patients Based on Circadian Rhythm[J]. Journal of Nursing, 2021, 28(7): 1 -5 .
[2] TAN Tian, PANG Yong-hui, ZUO Hong-qun, DENG Yu-yan. Effect of Ginger-separated Moxibustion on Blood Coagulation after Laparoscopic Radical Resection of Colorectal Cancer[J]. Journal of Nursing, 2021, 28(7): 6 -10 .
[3] TIAN Li, LI Meng-yuan, XIAO Shu-qing, YAN Ling. Prevalence and Influence Factors of Anticipatory Grief in Advanced Cancer Patients[J]. Journal of Nursing, 2021, 28(7): 11 -14 .
[4] GUAN Yan, LU Shan, YE Jia-xin, WANG Zhe-yun. Construction and Application of Standardized Practice Scheme for Pressure Injury after Cardiac Surgery[J]. Journal of Nursing, 2021, 28(7): 15 -20 .
[5] REN Li, ZHAO Xiu-fang. Construction of Competency Model and Index System of New Nurses in Maternity and Children’s Hospital Based on Onion Model[J]. Journal of Nursing, 2021, 28(7): 21 -25 .
[6] . [J]. Journal of Nursing, 2021, 28(7): 26 -29 .
[7] LIU Ping, YOU Ao-lin, LIU Shu, LI Ya-nan, LUAN Xiao-rong. Qualitative Studies on Postgraduate Training Experience of Master of Nursing Specialist in China: A Meta-synthesis[J]. Journal of Nursing, 2021, 28(7): 35 -42 .
[8] LI Huan-ze, CHEN Hong-fang, HUANG Li-qun, AN Fang-fang, XU Peng, ZHUANG Miao-qing, ZHANG Lu-yu, WANG Jia-yi. Qualitative Studies on Experience of Emergency Nurses in Hospice Care: A Meta-synthesis[J]. Journal of Nursing, 2021, 28(7): 43 -48 .
[9] XIE Xiao-xing, ZHAO Min-hui. Current Status of Delayed Onset of Lactogenesis II of High-risk Pregnant Women in Maternal Intensive Care Unit and Its Influence Factors: A 229-case Study[J]. Journal of Nursing, 2021, 28(7): 49 -52 .
[10] . [J]. Journal of Nursing, 2021, 28(7): 53 -58 .