CLC Number:
[1] Shortliffe EH, Sepúlveda MJ.Clinical decision support in the era of artificial intelligence[J]. JAMA, 2018, 320(21): 2199-2200. DOI:10.1001/jama.2018.17163. [2] Hak F, Guimarães T, Santos M.Towards effective clinical decision support systems: a systematic review[J]. PLoS One, 2022, 17(8): e0272846. DOI:10.1371/journal.pone.0272846. [3] Sariköse S, Senol Çelik S.The effect of clinical decision support systems on patients, nurses, and work environment in ICUs: a systematic review[J]. Comput Inform Nurs, 2024, 42(4): 298-304. DOI:10.1097/CIN.0000000000001107. [4] Kouri A, Yamada J, Lam Shin Cheung J, et al. Do providers use computerized clinical decision support systems? A systematic review and Meta-regression of clinical decision support uptake[J]. Implement Sci, 2022, 17(1):21. DOI:10.1186/s13012-022-01199-3. [5] Chen Z, Liang N, Zhang H, et al.Harnessing the power of clinical decision support systems: challenges and opportunities[J]. Open Heart, 2023, 10(2): e002432. DOI:10.1136/openhrt-2023-002432. [6] Sperl-Hillen J, Crain AL, Wetmore JB, et al.A CKD clinical decision support system: a cluster randomized clinical trial in primary care clinics[J]. Kidney Med, 2024, 6(3): 100777. DOI:10.1016/j.xkme.2023.100777. [7] Wallace H, Wang Q, Botha T, et al.Optimising diagnosis and management of kidney disease: an implementation trial of a clinical decision support system future health today[J]. BMC Nephrol, 2024, 25(1): 57. DOI:10.1186/s12882-024-03489-y. [8] 方园, 周英凤, 李丽, 等. 妊娠期糖尿病非药物管理决策支持系统的构建及应用[J]. 中华护理杂志, 2023, 58(9): 1043-1049. DOI:10.3761/j.issn.0254-1769.2023.09.003. [9] 胡雁, 郝玉芳. 循证护理学[M].2版. 北京:人民卫生出版社, 2018. [10] Lockwood C, Munn Z, Porritt K.Qualitative research synthesis: methodological guidance for systematic reviewers utilizing Meta-aggregation[J].Int J Evid Based Healthc, 2015,13(3):179-187.DOI:10.1097/XEB.0000000000000062. [11] Weber S, Crago EA, Sherwood PR, et al.Practitioner approaches to the integration of clinical decision support system technology in critical care[J]. J Nurs Adm, 2009, 39(11): 465-469. DOI:10.1097/NNA.0b013e3181bd5fc2. [12] Goud R, Van Engen-Verheul M, De Keizer NF, et al. The effect of computerized decision support on barriers to guideline implementation: a qualitative study in outpatient cardiac rehabilitation[J]. Int J Med Inform, 2010, 79(6): 430-437. DOI:10.1016/j.ijmedinf.2010.03.001. [13] Campion TR, Waitman LR, Lorenzi NM, et al.Barriers and facilitators to the use of computer-based intensive insulin therapy[J]. Int J Med Inform, 2011, 80(12): 863-871. DOI:10.1016/j.ijmedinf.2011.10.003. [14] Liberati EG, Ruggiero F, Galuppo L, et al.What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation[J]. Implement Sci, 2017, 12(1):113. DOI:10.1186/s13012-017-0644-2. [15] Cresswell KM, Lee L, Mozaffar H, et al.Sustained user engagement in health information technology: the long road from implementation to system optimization of computerized physician order entry and clinical decision support systems for prescribing in hospitals in England[J]. Health Serv Res, 2017, 52(5):1928-1957.DOI:10.1111/1475-6773.12581. [16] Chung P, Scandlyn J, Dayan PS, et al.Working at the intersection of context, culture, and technology: provider perspectives on antimicrobial stewardship in the emergency department using electronic health record clinical decision support[J]. Am J Infect Control, 2017, 45(11): 1198-1202. DOI:10.1016/j.ajic.2017.06.005. [17] Blanco N, O’Hara LM, Robinson GL, et al. Health care worker perceptions toward computerized clinical decision support tools for Clostridium difficile infection reduction: a qualitative study at 2 hospitals[J]. Am J Infect Control, 2018, 46(10):1160-1166.DOI:10.1016/j.ajic.2018.04.204. [18] Giuliano CA, Binienda J, Kale-Pradhan PB, et al.“I never would have caught that before”: pharmacist perceptions of using clinical decision support for antimicrobial stewardship in the United States[J]. Qual Health Res, 2018, 28(5): 745-755. DOI:10.1177/1049732317750863. [19] Chua AQ, Tang SSL, Lee LW, et al.Psychosocial determinants of physician acceptance toward an antimicrobial stewardship program and its computerized decision support system in an acute care tertiary hospital[J]. J Am Coll Clin Pharm, 2018, 1(1): e1-e8. DOI:10.1002/jac5.1028. [20] Grau LE, Weiss J, O’Leary TK, et al. Electronic decision support for treatment of hospitalized smokers: a qualitative analysis of physicians’ knowledge, attitudes, and practices[J]. Drug Alcohol Depend, 2019(194):296-301. DOI:10.1016/j.drugalcdep.2018.10.006. [21] Melnick ER, Holland WC, Ahmed OM, et al.An integrated web application for decision support and automation of EHR workflow: a case study of current challenges to standards-based messaging and scalability from the EMBED trial[J]. JAMIA Open, 2019, 2(4):434-439. DOI:10.1093/jamiaopen/ooz053. [22] Strohm L, Hehakaya C, Ranschaert ER, et al.Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors[J]. Eur Radiol, 2020, 30(10): 5525-5532. DOI:10.1007/s00330-020-06946-y. [23] Petitgand C, Motulsky A, Denis JL.Investigating the barriers to physician adoption of an artificial intelligence-based decision support system in emergency care: an interpretative qualitative study[J]. Stud Health Technol Inform, 2020(270):1001-1005. DOI:10.3233/SHTI200312. [24] Salwei ME, Carayon P, Hoonakker PLT, et al.Workflow integration analysis of a human factors-based clinical decision support in the emergency department[J]. Appl Ergon, 2021(97): 103498. DOI:10.1016/j.apergo.2021.103498. [25] Vandenberg AE, Vaughan CP, Stevens M, et al.Improving geriatric prescribing in the ED: a qualitative study of facilitators and barriers to clinical decision support tool use[J]. Int J Qual Health Care, 2017, 29(1):117-123.DOI:10.1093/intqhc/mzw129. [26] Huang Z, George MM, Tan YR, et al.Are physicians ready for precision antibiotic prescribing? A qualitative analysis of the acceptance of artificial intelligence-enabled clinical decision support systems in India and Singapore[J]. J Glob Antimicrob Resist,2023(35):76-85.DOI:10.1016/j.jgar.2023.08.016. [27] 翟越, 张玉侠, 虞正红. 护士视角下的护理临床决策支持系统实施障碍因素分析[J]. 中国护理管理, 2023, 23(1): 46-51. DOI:10.3969/j.issn.1672-1756.2023.01.010. [28] Gunlicks-Stoessel M, Liu Y, Parkhill C, et al.Adolescent, parent, and provider attitudes toward a machine learning based clinical decision support system for selecting treatment for youth depression[J]. BMC Med Inform Decis Mak, 2024, 24(1): 4. DOI:10.1186/s12911-023-02410-1. [29] Newton N, Bamgboje-Ayodele A, Forsyth R, et al.How are clinicians’ acceptance and use of clinical decision support systems evaluated over time? A systematic review[J]. Stud Health Technol Inform, 2024(310): 259-263. DOI:10.3233/SHTI230967. [30] Arpaci I, Ghazisaeedi M, Esmaeilzadeh F, et al.Ranking the critical success factors for hospital information systems using a fuzzy analytical hierarchy process[J]. Comput Inform Nurs,2023,41(10):765-770.DOI:10.1097/CIN.0000000000001042. [31] 医疗机构临床决策支持系统应用管理规范(试行)[J].医疗机构临床决策支持系统应用管理规范(试行)[J]. 中国卫生资源, 2023, 26(5): 620. [32] Nair M, Andersson J, Nygren JM, et al.Barriers and enablers for implementation of an artificial intelligence-based decision support tool to reduce the risk of readmission of patients with heart failure: stakeholder interviews[J]. JMIR Form Res, 2023(7): e47335. DOI:10.2196/47335. [33] Fernando M, Abell B, Tyack Z, et al.Using theories, models, and frameworks to inform implementation cycles of computerized clinical decision support systems in tertiary health care settings: scoping review[J]. J Med Internet Res, 2023(25): e45163. DOI:10.2196/45163. [34] 周勤学, 蔡建利, 韩慧, 等. 压力性损伤护理评估智能决策系统的研发与应用[J]. 护理学报, 2022, 29(2): 11-16. DOI:10.16460/j.issn1008-9969.2022.02.011. [35] Saban M, Sosna J, Singer C, et al.Clinical decision support system recommendations: how often do radiologists and clinicians accept them?[J]. Eur Radiol, 2022, 32(6): 4218-4224. DOI:10.1007/s00330-021-08479-4. [36] 卢雯, 陈湘玉. 护理临床决策支持系统使用意愿的影响因素研究[J]. 护理学报, 2023, 30(5):18-22. DOI:10.16460/j.issn1008-9969.2023.05.018 |
[1] | ZHENG Wen-kai, DU Juan, WANG Mei-fang, FENG Xiu-juan, HENG Chun-ni. Chain mediating effects of self-worth and interpersonal communication between metacognitive ability and self-directed learning ability among nursing undergraduates [J]. Journal of Nursing, 2024, 31(15): 52-56. |
[2] | . [J]. Journal of Nursing, 2024, 31(14): 24-27. |
[3] | . [J]. Journal of Nursing, 2024, 31(14): 69-73. |
[4] | . [J]. Journal of Nursing, 2024, 31(13): 30-34. |
[5] | SHI Yan-ru, LI Qi, CAO Xiao-qin, QIANG Xiao-ling, HUA Yan, YAN Pei. Current status of innovative behavior of psychiatric nurses and its influencing factors [J]. Journal of Nursing, 2024, 31(11): 48-52. |
[6] | HU Yu-lan, CHEN Ying, YU Gen-zhen, WANG Meng-yue. Development of questionnaire of attitude of pediatric nurses toward transitional nursing of children with chronic diseases and its reliability and validity [J]. Journal of Nursing, 2024, 31(10): 64-69. |
[7] | XU Xiao-dong, LIU Shun-mei, ZHAO Xuan, DING Xiu-na. Construction of core competency evaluation index for nurses of apical microsurgery [J]. Journal of Nursing, 2024, 31(8): 69-73. |
[8] | . [J]. Journal of Nursing, 2024, 31(3): 73-78. |
[9] | JIA Ya-nan, CHAI Yu-xia, JIA Ying-lan, LI Xi-juan. Mediating role of work alienation between perceived overqualification and innovative behavior in emergency nurses [J]. Journal of Nursing, 2023, 30(24): 49-52. |
[10] | . [J]. Journal of Nursing, 2023, 30(21): 7-12. |
[11] | . [J]. Journal of Nursing, 2023, 30(9): 18-24. |
[12] | CHENG Qing-yun, ZHANG Yan, TIAN Yu-tong, XU Bing, LU Yi-xin, LI Xiao-hua, GAO Yue, GAO Meng-ke. Current status of online learning ability of clinical nurses in tertiary grade-A hospitals and its influencing factors: a 924-case study [J]. Journal of Nursing, 2023, 30(1): 1-6. |
[13] | WU Xiu-qiang, YANG Zhen, XIE Zhi-qin, DU Yun-yu, YANG Li-na,CHEN Shi-Han. Summary of the best evidence for nurses moral dilemma intervention [J]. Journal of Nursing, 2023, 30(1): 47-52. |
[14] | LIN Yang, ZHANG Qin’e, ZHANG Li-li, ZHANG Wen-bo, XU Ning. Cognition and Experience of Nurses’ Participation in Shared Decision-making Practice: A Meta-analysis [J]. Journal of Nursing, 2022, 29(21): 32-37. |
[15] | WANG Qiu-ting, WEI Lin, LIU Yang-chen, LIN Jing-xia, LIN Li-jun, HU Ping, ZHU Li-jia, LIN Mei-zhen. Development of Core Competence Evaluation Index System of Nursing Specialists of Chinese Medicine [J]. Journal of Nursing, 2022, 29(4): 1-6. |
|