以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (3): 57-62.doi: 10.16460/j.issn1008-9969.2023.03.057

Previous Articles     Next Articles

Fracture risk prediction tools in elderly patients with osteoporosis: a scoping review

ZHANG Hong-xia1, YANG Qiao-qiao2, DANG Chen-po2, ZHANG Wen-fang1, ZHANG Xiao-min1, SHAO Zhuan-lan1   

  1. 1. School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China;
    2. Dept. of Sports Medicine,No.940 Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, China
  • Received:2022-09-30 Online:2023-02-10 Published:2023-03-14

Abstract: Objective To comprehensively analyze fracture risk prediction tools in senile osteoporosis patients, and provide reference for researchers to develop or introduce prediction tools in line with national conditions. Methods Scoping review was conducted and we searched 7 Chinese and English databases including PubMed, Embase, Web of Science, CNKI, Wanfang Data Knowledge Service Platform, VIP Chinese scientific journal data and China Biomedical Literature Database for eligible literature. Two researchers screened the literature and conducted data extraction, and assessment of risk of bias and applicability independently. Results Eighteen pieces of English literature were included, including 12 prediction tool development studies and 6 prediction tool efficacy validation studies, involving 12 fracture risk prediction tools in elderly patients with osteoporosis. The types of tools were mainly risk prediction models and risk assessment tables. Conclusion There are various kinds of fracture risk prediction tools for elderly patients with osteoporosis, with good prediction performance, but overall high risk of bias. The existing prediction tools should be verified and calibrated. Local data-based risk prediction tools with low risk of bias and high clinical applicability should be developed, so as to provide reference for the precise health management of elderly patients with osteoporosis.

Key words: senile osteoporosis, osteoporotic fractures, risk assessment, model construction, population health management

CLC Number: 

  • R473.59
[1] 闫坤,张瑞坤,吴雨伦,等.益骨汤治疗老年性骨质疏松症的临床疗效评价[J].中国骨质疏松杂志,2022,28(5):675-679. DOI:10.3969/j.issn.1006-7108.2022.05.010.
[2] 中华医学会骨质疏松和骨矿盐疾病分会.中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(4):317-318. DOI:10.3969/j.issn.1674-2591.2019.04.001.
[3] Falaschi P, Marsh D, editors. Orthogeriatrics: The management of older patients with fragility fractures[M]. Cham (CH): Springer, 2021. DOI:10.1007/978-3-030-48126-1.
[4] Akkawi I, Zmerly H.Osteoporosis: current concepts[J].Joints, 2018,6(2):122-127. DOI: 10.1055/s-0038-1660790.
[5] Migliorini F, Giorgino R, Hildebrand F, et al.Fragility fractures: risk factors and management in the elderly[J]. Medicina(Kaunas),2021,57(10):1119.DOI:10.3390/medicina57101119.
[6] 夏维波. 骨质疏松症防治中的难点和应对[J].国际内分泌代谢杂志,2022,42(3):165-169.DOI:10.3760/cma.j.cn121383-20220406-04011.
[7] 戴婷,马彩莉,张孟喜,等.老年人骨折风险评估工具的研究进展[J].护理学杂志,2020,35(12):106-110.?DOI:10.3870/j.issn.1001-4152.2020.12.106.
[8] 陈香萍,张奕,庄一渝,等.PROBAST:诊断或预后多因素预测模型研究偏倚风险的评估工具[J]. 中国循证医学杂志,2020,20(6):737-744. DOI:10.7507/1672-2531.201910087.
[9] 邬兰,张永,曾宪涛.QUADAS-2在诊断准确性研究的质量评价工具中的应用[J].湖北医药学院学报,2013,32(3):201-208. DOI:10.7543/j.issn.1006-9674.2013.03.004.
[10] Nguyen ND, Frost SA, Center JR, et al.Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks[J]. Osteoporos Int, 2008,19(10):1431-1444. DOI:10.1007/s00198-008-0588-0.
[11] Kanis JA, Johnell O, Oden A, et al.FRAX and the assessment of fracture probability in men and women from the UK[J]. Osteoporos Int, 2008,19(4):385-397. DOI:10.1007/s00198-007-0543-5.
[12] Fujiwara S, Nakamura T, Orimo H, et al.Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX)[J]. Osteoporos Int, 2008,19(4):429-435. DOI:10.1007/s00198-007-0544-4.
[13] Hippisley-Cox J, Coupland C.Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores[J]. BMJ, 2009,339:b4229. DOI:10.1136/bmj.b4229.
[14] Leslie WD, Lix LM, Johansson H, et al.Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration[J]. J Bone Miner Res, 2010,25(11):2350-2358. DOI:10.1002/jbmr.123.
[15] Kim HY, Jang EJ, Park B, et al.Development of a Korean Fracture Risk Score(KFRS) for predicting osteoporotic fracture risk: analysis of data from the Korean National Health Insurance Service[J]. PLoS One, 2016,11(7):e0158918. DOI:10.1371/journal.pone.0158918.
[16] Francesco L, Elisa B, Raffaella M, et al.Assessing risk of osteoporotic fractures in primary care: development and validation of the FRA-HS algorithm[J]. Calcif Tissue Int, 2017,100(6):537-549. DOI:10.1007/s00223-016-0230-7.
[17] Rubin KH, Möller S, Holmberg T, et al.A New Fracture Risk Assessment Tool (FREM) based on public health registries[J]. J Bone Miner Res, 2018,33(11):1967-1979.DOI:10.1002/jbmr.3528.
[18] Lesnyak O, Ismailov S, Shakirova M, et al.Epidemiology of hip fracture and the development of a FRAX model for Uzbekistan[J]. Arch Osteoporos, 2020,15(1):119. DOI:10.1007/s11657-020-00792-7.
[19] Saleh YAL, Sulimani RA, Alomary S, et al.Incidence of hip fracture in Saudi Arabia and the development of a FRAX model[J]. Arch Osteoporos, 2022,17(1):56.DOI:10.1007/s11657-022-01085-x.
[20] Sandhu SK, Nguyen ND, Center JR, et al.Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram[J]. Osteoporos Int, 2010,21(5):863-871. DOI:10.1007/s00198-009-1026-7.
[21] Collins GS, Mallett S, Altman DG.Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFracture Scores[J]. BMJ, 2011,342:d3651. DOI:10.1136/bmj.d3651.
[22] Tamaki J, Iki M, Kadowaki E, et al.Fracture risk prediction using FRAX® : a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) cohort study[J]. Osteoporos Int, 2011,22(12):3037-3045. DOI:10.1007/s00198-011-1537-x.
[23] Wang J, Wang X, Fang Z, et al.The effect of FRAX on the prediction of osteoporotic fractures in urban middle-aged and elderly healthy Chinese adults[J]. Clinics (Sao Paulo), 2017,72(5):289-293. DOI:10.6061/clinics/2017(05)06.
[24] Singh V, Pal AK, Biswas D, et al.Identification of patients at high risk of fragility fractures in an Indian clinical setting using FRAX[J]. Arch Osteoporos, 2020,15(1):131. DOI:10.1007/s11657-020-00807-3.
[25] Skjødt MK, Möller S, Hyldig N, et al.Validation of the Fracture Risk Evaluation Model (FREM) in predicting major osteoporotic fractures and hip fractures using administrative health data[J]. Bone, 2021,147:115934. DOI:10.1016/j.bone.2021.115934.
[26] Hsieh CI, Zheng K, Lin C, et al.Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning[J]. Nat Commun, 2021,12(1):5472. DOI:10.1038/s41467-021-25779-x.
[27] Leslie WD, Berger C, Langsetmo L, et al.Construction and validation of a simplified fracture risk assessment tool for Canadian women and men: results from the CaMos and Manitoba cohorts[J]. Osteoporos Int, 2011,22(6):1873-1883. DOI:10.1007/s00198-010-1445-5.
[28] Austin PC, Steyerberg EW.Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models[J]. Stat Methods Med Res, 2017,26(2):796-808. DOI:10.1177/0962280214558972.
[29] 马远征,王以朋,刘强,等.中国老年骨质疏松诊疗指南(2018)[J].中国老年学杂志,2019,39(11):2557-2575.DOI:10.3969/j.issn.1005-9202.2019.11.001.
[30] Beaudoin C, Moore L, Gagné M, et al.Performance of predictive tools to identify individuals at risk of non-traumatic fracture: a systematic review, meta-analysis, and meta-regression[J]. Osteoporos Int, 2019,30(4):721-740. DOI:10.1007/s00198-019-04919-6.
[31] 夏维波. 骨质疏松症高骨折风险患者的识别与防治策略[J].中华骨质疏松和骨矿盐疾病杂志,2020, 13(6):493-498. DOI:10.3969/j.issn.1674-2591.2020.06.001.
[32] Ho-Le TP, Center JR, Eisman JA, et al.Prediction of bone mineral density and fragility fracture by genetic profiling[J]. J Bone Miner Res, 2017,32(2):285-293. DOI:10.1002/jbmr.2998.
[33] 刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研究进展[J].护理学报,2021, 28(7):30-34. DOI:10.16460/j.issn1008-9969.2021.07.030.
[1] XIANG Yu-ting, CHU Jie, YAN Min, LE Qu, YU Jia-xin. Best Evidence Summary of Risk Assessment of Venous Thromboembolism during Pregnancy and Puerperium [J]. Journal of Nursing, 2022, 29(3): 46-51.
[2] ZHANG Rui-ke, WANG Yu-xiu. Nursing Management of Non-suicidal Self-injury in Inpatients with Borderline Personality Disorder Based on Hazard Analysis Critical Control Point [J]. Journal of Nursing, 2022, 29(22): 20-25.
[3] CHEN Hao, ZHANG Jin-jun, LIU Fei, LV Meng, WANG Jing, LIU Xia, ZHANG Shu-xiang. Development of Self-rating Scale of Venous Thromboembolism Risk for Home-based Elderly People [J]. Journal of Nursing, 2022, 29(22): 15-19.
[4] GONG Yan, JIANG Qi-xia, CHEN Wen-fang, WANG Hai-hong, MA Li. A Comparative Study of Predictive Effects of Three Assessment Scales on Surgical Acquired Pressure Injuries [J]. Journal of Nursing, 2021, 28(9): 66-70.
[5] HU Hui-ju, HAN Jing, TANG Qi-qun, CHENG Jie, LI Hui-yuan. Effect Comparison between Morse Fall Scale and Stay Independent Brochure Questionnaire in the Elderly in Nursing Homes [J]. Journal of Nursing, 2021, 28(19): 8-12.
[6] YAO Xun-xia, ZHANG Li-xiang, CAO Jiao-yu, OU An-ping, HU Fang, WU Jin-yu. Construction of Evaluation Index System for Risk Factors of Vasoactive Drug-induced Phlebitis in Patients with Cardiovascular Diseases [J]. Journal of Nursing, 2021, 28(12): 65-70.
[7] LI Qian-ling, GAN Xiu-ni, LI Yuan, TANG Wei. Comparison of Predictive Power for PICC-related Venous Thromboembolism among Cancer Patients of Autar DVT Risk Assessment Scale and Caprini Risk Assessment Scale [J]. Journal of Nursing, 2019, 26(22): 1-5.
[8] WU Qiao-mei,ZHANG Li-juan,ZHENG Jing-xia. Development of Indicator System of Aspiration Risk Evaluation in ICU with Delphi Method [J]. Journal of Nursing, 2018, 25(2): 1-6.
[9] ZHONG Ci-fang,LIU Zhi-qin,OU Yan-yun,LIN Hai-ni,ZHANG Yu-ling. Knowledge of Aspiration Risk Assessment of Nurses in Respiratory Department [J]. Journal of Nursing, 2015, (13): 32-34.
[10] LIU Zuo-yan,WANG Ying,CHUN Xue-li,CHEN Yan,CHEN Qian,HU Xiu-ying. Application of Fall Risk Assessment Scale in Safe Management of Hospitalized Seniors [J]. Journal of Nursing, 2013, (18): 7-9.
Viewed
Full text


Abstract

Cited

  Shared   
[1] HE Wan-qiao, GAI Wei, ZHOU Chun-lan, ZHANG Yi-zhen, TAO Yan-ling. Current status of quality of life of maintenance hemodialysis patients from perspective of positive psychology and its influencing factors[J]. Journal of Nursing, 2023, 30(2): 12 -16 .
[2] WANG Chong, LIANG Can, LIU Li-hui. Development of nursing night shift performance management system and its application[J]. Journal of Nursing, 2023, 30(2): 31 -34 .
[3] LIU Sha, CHEN Ling, LI Tian-tian, ZHANG Dan-li, CAI Wen-zhi. Developmental trajectory of pelvic floor muscle training self-efficacy in antenatal and postnatal women and its impact on postpartum urinary incontinence[J]. Journal of Nursing, 2023, 30(3): 1 -5 .
[4] GAO Jie, LI Hui-ping, SONG Jiang-yan, LI Jia-xin, ZHOU Meng-ke, ZHANG Shan-shan, PANG Zi-yun. Construction of coping-focused family resilience intervention program for breast cancer patients[J]. Journal of Nursing, 2023, 30(3): 6 -10 .
[5] DONG Shi-pan, LIANG Xiao-ying, HUANG Lan-yi, LIANG Shan-ying, LIANG Jin-bo, DAI wei, ZHAO Yu-ling, HUANG yi. Translation of Health Promoting Behavior for Bloating scale for patients with functional abdominal distension and its reliability and validity[J]. Journal of Nursing, 2023, 30(3): 11 -15 .
[6] LIU Wei, LI Yu-ling, HAN Qing-hua, LIN Yan-li. Construction of peer support education program for nursing students based on social learning theory[J]. Journal of Nursing, 2023, 30(3): 16 -19 .
[7] ZHANG Yu-fen, WANG Hui, HU Kai-li. Relationship between moral distress and moral sensitivity in clinical nurses: a latent profile analysis[J]. Journal of Nursing, 2023, 30(3): 20 -25 .
[8] ZHENG Wei, QIN Ying, JIANG Qing-hua. Instrument placement in ultrasonic cleaner based on octave software and aluminum foil corrosion method[J]. Journal of Nursing, 2023, 30(3): 26 -29 .
[9] HUANG Shan, YUAN Juan, YAN Gui-ming. Free association-based analysis of group emotion of nursing undergraduates[J]. Journal of Nursing, 2023, 30(3): 30 -34 .
[10] TIAN Tian, LI Zhuan-zhen, DU Fang-fang, ZHU Yong-yan, LI Wei-li, WAN Fei-fei. Construction of nursing safety training system for new nurses based on Transition Shock Theory[J]. Journal of Nursing, 2023, 30(3): 35 -39 .