以质量求发展,以服务铸品牌

Journal of Nursing ›› 2023, Vol. 30 ›› Issue (1): 17-21.doi: 10.16460/j.issn1008-9969.2023.01.017

Previous Articles     Next Articles

Comparison of random forest and Logistic regression models for predicting early discharge after enhanced recovery after surgery for patients with endometrial cancer

LI Meng-na, LIU Xiao-xia,CHEN Mei-wen, ZHAO Rui, GE Li-na   

  1. Dept. of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110000, China
  • Received:2022-09-19 Online:2023-01-10 Published:2023-02-22

Abstract: Objective To construct prediction models for early discharge of endometrial cancer patients after enhanced recovery after surgery (ERAS) with random forest and Logistic regression, respectively, and compare the prediction effects of the 2 models. Methods Using convenience sampling, 328 patients with endometrial cancer who underwent ERAS and met the inclusion and exclusion criteria in a tertiary grade-A hospital from January 2019 to December 2021 were randomly assigned to model group and validation group according to the ratio of 7∶3, and the random forest and Logistic regression were used to construct the prediction models of early discharge after ERAS for patients with endometrial cancer. The performance of the 2 models was compared in terms of accuracy, sensitivity, specificity, positive predictive value, negative predictive value, Jorden index, and AUC of ROC. Results In the model group, the accuracy of random forest and Logistic regression was 1.000, and 0.896; sensitivity 1.000, and 0.833; specificity 1.000, and 0.915; positive predictive value 1.000, and 0.750; negative predictive value 1.000, and 0.942; Jorden index 1.000,and 0.729 and AUC 1.000, and 0.950 respectively; in the validation group, the accuracy of random forest and Logistic regression was 0.969, and 0.888; sensitivity 0.960, and 0.750; specificity 0.973, and 0.943; positive predictive value 0.923, and 0.840; negative predictive value 0.986, and 0.904; Jorden’s index 0.933, 0.693, and AUC 0.940, and 0.900, respectively. Conclusion Random forest model outperforms Logistic regression model in predicting early discharge after enhanced recovery after surgery for endometrial cancer patients.

Key words: random forest, Logistic regression, enhanced recovery after surgery, endometrial cancer patients, prediction model, length of stay

CLC Number: 

  • R713
[1] 刘美玲,龚桂芳,肖玉梅,等. 日间病房妇科腹腔镜手术患者快速康复循证护理实践[J]. 护理学报, 2019,26(15):31-35. DOI:10.16460/j.issn1008-9969.2019.15.031.
[2] Crane EK, Brown J, Lehman A, et al.Perioperative recovery and narcotic use in laparoscopic versus robotic surgery for endometrial cancer[J]. J Minim Invasive Gynecol, 2021,28(11):1898-1902. DOI: 10.1016/j.jmig.2021.04.022.
[3] 中国抗癌协会妇科肿瘤专业委员会. 子宫内膜癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021,31(6):501-512. DOI:10.19401/j.cnki.1007-3639.2021.06.08.
[4] Berian JR, Ban KA, Liu JB, et al.Adherence to enhanced recovery protocols in NSQIP and association with colectomy outcomes[J]. Ann Surg, 2019,269(3):486-493. DOI: 10.1097/SLA.0000000000002566.
[5] De Nonneville A, Jauffret C, Braticevic C, et al.Enhanced recovery after surgery program in older patients undergoing gynaecologic oncological surgery is feasible and safe[J]. Gynecol Oncol, 2018,151(3):471-476. DOI:10.1016/j.ygyno.2018.09.017.
[6] Smith CG, Davenport DL, Hoffman MR.Characteristics associated with prolonged length of stay after myomectomy for uterine myomas[J]. J Minim Invasive Gynecol, 2019,26(7):1303-1310. DOI: 10.1016/j.jmig.2018.12.015.
[7] Crane EK, Brown J, Lehman A, et al.Perioperative recovery and narcotic use in laparoscopic versus robotic surgery for endometrial cancer[J]. J Minim Invasive Gynecol, 2021,28(11):1898-1902. DOI: 10.1016/j.jmig.2021.04.022.
[8] Shao W, Zhang Z, Zhang J, et al.Charlson comorbidity index as a predictor of short-term outcomes after pulmonary resection[J]. J Thorac Dis, 2020,12(11):6670-6679. DOI:10.21037/jtd-20-2264.
[9] Datta A, Sebastian A, Chandy RG, et al.Complications and outcomes of diaphragm surgeries in epithelial ovarian malignancies[J]. Indian J Surg Oncol, 2021,12(4):822-829. DOI: 10.1007/s13193-021-01438-x.
[10] 马佳楚,商临萍,李淑花,等. 慢性阻塞性肺疾病患者住院时间延长危险因素的Meta分析[J].解放军护理杂志, 2022,39(2):60-63.
[11] Sánchez-Iglesias JL, Gómez-Hidalgo NR,Pérez-Benavente A, et al.Importance of enhanced recovery after surgery (ERAS) protocol compliance for length of stay in ovarian cancer surgery[J]. Ann Surg Oncol, 2021,28(13):8979-8986. DOI: 10.1245/s10434-021-10228-2.
[12] 刘娇. 快速康复外科护理在腹腔镜宫颈癌根治术患者中的应用[J]. 医疗装备, 2019,32(21):181-183.
[13] 轩俊娜. 快速康复外科理念对子宫内膜癌手术患者术前焦虑和术后疼痛的影响[J].中国民康医学,2018,30(10):112-114.
[14] 吴莹. 快速康复外科理念在达芬奇机器人子宫内膜腺癌手术患者中应用的随机对照研究[D].郑州:郑州大学, 2021. DOI:10.27466/d.cnki.gzzdu.2021.000531.
[15] Obermair A, Janda M, Baker J, et al.Improved surgical safety after laparoscopic compared to open surgery for apparent early stage endometrial cancer: results from a randomised controlled trial[J]. Eur J Cancer, 2012,48(8):1147-1153. DOI: 10.1016/j.ejca.2012.02.055.
[16] Laughlin-Tommaso S K, Lu D, Thomas L, et al. Short-term quality of life after myomectomy for uterine fibroids from the COMPARE-UF fibroid registry[J]. Am J Obstet Gynecol,2020,222(4):341-345.DOI:10.1016/j.ajog.2019.09.052.
[17] 中华医学会外科学分会,中华医学会麻醉学分会. 中国加速康复外科临床实践指南(2021)(三)[J]. 中华麻醉学杂志, 2021,41(9):1044-1052.
[18] Giglio MT, Marucci M, Testini M, et al.Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials[J]. Br J Anaesth, 2009,103(5):637-646. DOI:10.1093/bja/aep279.
[19] 吴可可,胡晓春,陈丹,等. 1例剖宫产后产褥期急性肺栓塞合并心脏骤停患者急救护理[J]. 护理学报, 2019,26(2):61-63. DOI:10.16460/j.issn1008-9969.2019.02.061.
[20] McKenny M, Conroy P, Wong A, et al. A randomised prospective trial of intra-operative oesophageal doppler-guided fluid administration in major gynaecological surgery[J]. Anaesthesia, 2013,68(12):1224-1231. DOI:10.1111/anae.12355.
[1] CHU Wen-qiang, PENG Jun-xiang, LI Dan-ling. Dynamic changes of inflammatory indicators after cranial surgery and diagnostic value for intracranial infection: a Logistic regression analysis [J]. Journal of Nursing, 2023, 30(1): 22-27.
[2] XU Fang, YAO Zhi-qing, HAN Wei, HAN Sheng-wei. Construction of Risk Prediction Model for Intraoperative Hypothermia in Patients Undergoing Radical Resection of Oral Cancer and Its Validation [J]. Journal of Nursing, 2022, 29(7): 1-6.
[3] YANG Jie, XIE Xiao-hua, LIAN Wan-cheng, YANG Mei, DENG Li-ping, PAN Lu. Construction and Verification of Predictive Model of Hemorrhage after Intravenous Thrombolysis in Acute Ischemic Stroke [J]. Journal of Nursing, 2022, 29(5): 10-14.
[4] WU Wei-xia, ZHANG Yi-ming, HE Zong-bin, HUANG Jing-wen, SHEN Hai-yan. Construction of Discharge Risk Prediction Model for Patients with Indwelled Double J Tubes after Upper Urinary Tract Calculi Operation [J]. Journal of Nursing, 2022, 29(4): 64-68.
[5] ZHAO Xiao-rui, LONG Yun, CHEN Si-qi, BAI Jie, XIAO Xiao, ZHU She-ning. Construction and Validation of Risk Prediction Model for Postoperative Gastrointestinal Dysfunction in Patients with Gynecological Malignant Tumor [J]. Journal of Nursing, 2022, 29(3): 72-78.
[6] JIAO Zi-shan, ZHANG Xin-yue, SHA Kai-hui. Value of Risk Assessment Models Based on Decision Tree C5.0 or Logistic Regression in Predicting Postpartum Stress Urinary Incontinence [J]. Journal of Nursing, 2022, 29(3): 12-18.
[7] CHEN Jing-wen, XU Lin-xia, WU Xiu-li, LI Xian-rong. Risk Factors of Unplanned Readmission in Postoperative Patients with Colorectal Cancer: An Analysis Based on Logistic Regression and Decision Tree [J]. Journal of Nursing, 2022, 29(2): 1-6.
[8] GUO Sheng-li, YUAN Wei, ZHU Ting, LIN Wei-na, CHEN Xiao-rong, XIA Mei-yan. Risk Prediction Model for Inadequate Bowel Preparation before Colonoscopy: A Systematic Review [J]. Journal of Nursing, 2022, 29(1): 35-40.
[9] CHEN Jun-shan, FAN Jie-mei, YU Jin-tian, ZHANG Ai-qin. Development and Validation of Delirium Prediction Model for Neurosurgical ICU Patients [J]. Journal of Nursing, 2021, 28(4): 1-8.
[10] LU Jing-yu, YANG Lian-zhao, CHEN Ling, YANG Yong. Construction and Validation of Risk Prediction Model of Mild Cognitive Impairment in Community-dwelling Elderly Hypertensive Patients [J]. Journal of Nursing, 2021, 28(24): 42-50.
[11] LIANG Dong-yan, GONG Pi-xin, QIU Ling-dong, WANG Hui, SHAO Mei-ying, SUN Zheng. Rehabilitation Effect of Enhanced Recovery after Surgery on Lung Cancer Patients Undergoing Thoracoscopic Radical Surgery:A Meta Analysis [J]. Journal of Nursing, 2021, 28(23): 41-46.
[12] LI Xue-jia, YANG Kai-qing. Establishment and Verification of Diabetic Ketoacidosis Risk Prediction Model for Type 2 Diabetic Patients [J]. Journal of Nursing, 2021, 28(22): 12-17.
[13] SHEN Yan, CHEN Lan, FEI Kai-hong, PAN Heng-de, YU Jia-qi, WANG Ying, JIANG Yan-hua, ZHANG Jie, YAO Ye-ying. Best Evidence Summary of Early Mobilization after Liver Transplantation [J]. Journal of Nursing, 2021, 28(16): 16-21.
[14] WU Yu-jie, XING Nai-jiao, HAN Li, LIU Pan-pan, ZHAO Di, ZHAO Meng-lu, WANG Ai-min. Risk Factors of Housebound Elderly in Community and Development of Risk Prediction Model [J]. Journal of Nursing, 2020, 27(8): 11-15.
[15] SHAN Ya-wei, CHEN Wei-jia, JIN Li-juan, FENG Hai-ping, CHEN Ru, FENG Cheng-cheng. Development of Evidence-based Practice Protocol for Enhanced Recovery after Total Knee Arthroplasty [J]. Journal of Nursing, 2020, 27(21): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
[1] YE Zeng-jie,Ruan Xiao-li,ZENG Zhen,XIE Qiong,CHENG Meng-hui,PENG Chao-hua,LU Yong-Mei,QIU Hong-zhong. Psychometric Properties of 10-item Connor-davidson Resilience Scale among Nursing Students[J]. , 2016, 23(21): 9 -13 .
[2] . [J]. Journal of Nursing, 2022, 29(24): 18 -21 .
[3] . [J]. Journal of Nursing, 2022, 29(24): 27 -31 .
[4] . [J]. Journal of Nursing, 2022, 29(24): 32 -37 .
[5] TANG Fan, LI Ya-ling, LUO Man-yue, WANG Zhao-bei, LI Zhang-shuangzi, CAI Peng. Best Evidence Summary for Endotracheal Suctioning in Neonates with Mechanical Ventilation[J]. Journal of Nursing, 2022, 29(24): 38 -42 .
[6] HOU xiang-chuan, WU yan-ting, ZHOU kai-qi, MO yi-jian, HUANG li-xiang, LIU yi-sha. Best Evidence-based Practice for Improving Qualified Rate of Sputum Collection in Patients with with Respiratory Diseases[J]. Journal of Nursing, 2022, 29(24): 43 -48 .
[7] ZHAO Jia, CAO Yong-jun, WEI Shu-mei, DI Li-shuang, HU Xiang-qin, LIU Shu-xia. Current Status of Core Competency of Midwives in Tianjin and Its Influencing Factors: A 261-case Study[J]. Journal of Nursing, 2022, 29(24): 59 -63 .
[8] . [J]. Journal of Nursing, 2022, 29(24): 64 -67 .
[9] . [J]. Journal of Nursing, 2022, 29(24): 68 -70 .
[10] CHENG Qing-yun, ZHANG Yan, TIAN Yu-tong, XU Bing, LU Yi-xin, LI Xiao-hua, GAO Yue, GAO Meng-ke. Current status of online learning ability of clinical nurses in tertiary grade-A hospitals and its influencing factors: a 924-case study[J]. Journal of Nursing, 2023, 30(1): 1 -6 .